Skip to main content
Log in

Global attractors for the three-dimensional Navier-Stokes equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we show that the weak solutions of the Navier-Stokes equations on any bounded, smooth three-dimensional domain have a global attractor for any positive value of the viscosity. The proof of this result, which bypasses the two issues of the possible nonuniqueness of the weak solutions and the possible lack of global regularity of the strong solutions, is based on a new point of view for the construction of the semiflow generated by these equations. We also show that, under added assumptions, this global attractor consists entirely of strong solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • A. V. Babin and G. R. Sell (1995). Symmetry properties of attractors for time-dependent partial differential equations (preprint).

  • A. V. Babin and M. I. Vishik (1983). Regular attractors of semigroups of evolutionary equations.J. Math. Pures Appl. 62, 441–491.

    Google Scholar 

  • A. V. Babin and M. I. Vishik (1989).Attractors of Evolution Equations, Nauka, Moscow (Russian).

    Google Scholar 

  • J. E. Billotti and J. P. LaSalle (1971). Dissipative periodic processes.Bull. Am. Math. Soc. 77, 1082–1088.

    Google Scholar 

  • C. C. Conley (1978).Isolated Invariant Sets and the Morse Index, CBMS Regional Conference, Vol. 89, Am. Math. Soc., Providence.

    Google Scholar 

  • P. Constantin and C. Foias (1988).Navier-Stokes Equations, University of Chicago Press, Chicago.

    Google Scholar 

  • P. Constantin, C. Foias, and R. Temam (1985).Attractors representing turbulent flows. Memoirs Am. Math. Soc. 53, No. 314.

  • N. Dunford and J. T. Schwartz (1958).Linear Operators, Parts 1, 2, and 3, Wiley Interscience, New York.

    Google Scholar 

  • C. Foias and R. Temam (1987). The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory. InDirections in Partial Differential Equations, Academic Press, New York, pp. 55–73.

    Google Scholar 

  • J. K. Hale (1988).Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol. 25, Am. Math. Soc., Providence.

    Google Scholar 

  • E. Hille and R. S. Phillips (1957).Functional Analysis and Semigroups, Am. Math. Soc. Colloq., Vol. 31, Am. Math. Soc., Providence.

    Google Scholar 

  • E. Hopf (1951). über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4, 213–231.

    Google Scholar 

  • J. L. Kelley and I. Namioka (1963).Linear Topological Spaces, Van Nostrand, Princeton, NJ.

    Google Scholar 

  • M. Kwak (1992). Finite dimensional inertial forms for the 2D Navier-Stokes equations.Indiana J. Math. 41, 927–981.

    Google Scholar 

  • M. Kwak, G. R. Sell, and Z. Shao (1994). Finite dimensional structures for the Navier-Stokes equations on thin 3D domains (AHPCRC preprint).

  • O. A. Ladyzhenskaya (1972). On the dynamical system generated by the Navier-Stokes equations, English translation.J. Soviet Math. 3, 458–479.

    Google Scholar 

  • O. A. Ladyzhenskaya (1991).Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge.

    Google Scholar 

  • J. Leray (1933). Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique.J. Math. Pures Appl. 12, 1–82.

    Google Scholar 

  • J. Leray (1934a). Essai sur les mouvements plans d'un liquide visqueux que limitent des parios.J. Math. Pures Appl. 13, 331–418.

    Google Scholar 

  • J. Leray (1934b). Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math. 63, 193–248.

    Google Scholar 

  • J. L. Lions (1969).Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Gauthier-Villar, Paris.

    Google Scholar 

  • K. Maurin (1967).Methods of Hilbert Spaces, Inst Math., Polish Acad. Sci. Monogr. Mat., VoL 45, Polish Scientific, Warsaw.

    Google Scholar 

  • C. L. M. H. Navier (1827). Mémoire sur les lois du mouvement des fluides.Mem. Acad. Sci. Inst. France 6, 38–440.

    Google Scholar 

  • A. Pazy (1983).Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York.

    Google Scholar 

  • S. D. Poisson (1831). Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastique et des fluides.J. Ecole Polytechn. 13, 1–174.

    Google Scholar 

  • G. Raugel and G. R. Sell (1993a). Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions (AHPCRC preprint 90-04).J. Am. Math. Soc. 6, 503–568.

    Google Scholar 

  • G. Raugel and G. R. Sell (1993b). Navier-Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions (AHPCRC preprint 92-062), Proc. College de France.

  • G. Raugel and G. R. Sell (1993c). Navier-Stokes equations on thin 3D domains. III. Global and local attractors. InTurbulence in Fluid Flows: A Dynamical Systems Approach, IMA Volumes in Mathematics and Its Applications, Vol. 55, pp. 137–163.

    Google Scholar 

  • R. J. Sacker and G. R. Sell (1977). Lifting properties in skew-product flows with applications to differential equations.Memoir Am. Math. Soc. 190.

  • R. J. Sacker and G. R. Sell (1994). Dichotomies for linear evolutionary equations in Banach spaces (IMA preprint 838).J. Diff. Eq.

  • G. R. Sell (1967a). Nonautonomous differential equations and topological dynamics. I. The basic theory.Trans. Am. Math. Soc. 127, 241–262.

    Google Scholar 

  • G. R. Sell (1967b). Nonautonomous differential equations and topological dynamics. II. Limiting equations.Trans. Am. Math. Soc. 127, 263–283.

    Google Scholar 

  • G. R. Sell (1973). Differential equations without uniqueness and classical topological dynamics.J. Diff. Eq. 14, 42–56.

    Google Scholar 

  • G. R. Sell and Y. You (1994). Dynamical systems and global attractors (AHPCRC preprint).

  • G. R. Sell and Y. You (1995).Dynamics of Evolutionary Equations, Lecture Notes.

  • G. G. Stokes (1845). On the theories of the internal friction of fluids in motion.Trans. Cambridge Phil. Soc. 8, 287–319.

    Google Scholar 

  • R. Temam (1977).Navier-Stokes Equations, North-Holland, Amsterdam.

    Google Scholar 

  • R. Temam (1983).Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 41, SIAM, Philadelphia.

    Google Scholar 

  • R. Temam (1988).Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York.

    Google Scholar 

  • M. I. Vishik (1992).Asymptotic Behavior of Solutions of Evolution Equations, Accademia Nazionale dei Lincei, Cambridge University Press, Cambridge.

    Google Scholar 

  • W. von Wahl (1985).The Equations of Navier-Stokes and Abstract Parabolic Problems, Vieweg and Sohn, Braunschweig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sell, G.R. Global attractors for the three-dimensional Navier-Stokes equations. J Dyn Diff Equat 8, 1–33 (1996). https://doi.org/10.1007/BF02218613

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02218613

Key words

Navigation