Skip to main content

Metals and Alloys

  • Chapter
  • First Online:
Archaeometallurgy – Materials Science Aspects

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 706 Accesses

Abstract

Pure metals are rarely used in modern technology. In most cases, alloys are used. These are very intimate, deliberately produced mixtures of a base metal and other metals, or today also non-metals, e.g. with silicon. The base metal for a tin bronze or for brass is copper, alloying elements are tin and zinc. Steels are alloys of iron with carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abdel-Motelib A, Bode M, Hartmann R, Hartung U, Hauptmann A, Pfeiffer K (2012) Archaeometallurgical expeditions to the Sinai Peninsula and the Eastern Desert of Egypt (2006, 2008). Meta 19(1/2):3–59

    Google Scholar 

  • Abels BU (1972) Die Randleistenbeile in Baden-Württemberg, dem Elsaß, der Franche Comté und der Schweiz. C.H. Beck, München

    Google Scholar 

  • Abu-Ajamieh MM, Bender FK, Eicher RN (1988) Natural resources in Jordan. Inventory-Evaluation-Development Program. Natural Resources Authority Amman

    Google Scholar 

  • Aruz J (2003) Art of the first cities. The Third Millennium B.C. from the Mediterranean to the Indus. The Metropolitan Museum of Art, New York

    Google Scholar 

  • Askeland DR (1996) Materialwissenschaften. Grundlagen Übungen Lösungen. Spektrum Akad Verlag

    Google Scholar 

  • Bachmann HG (1999a) Gold for coinage: history and metallurgy. In: Schmidtbaur H (ed) Gold: progress in chemistry, biochemistry and technology. Wiley, pp 3–37

    Google Scholar 

  • Bachmann HG (1999b) On the early metallurgy of gold. Some answers and more questions. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of Metallurg. Proc intern Conf “The beginnings of metallurgy”, Bochum 1995, vol 9. Der Anschnitt Beih, pp 267–275

    Google Scholar 

  • Bachmann HG (2006) Mythos gold. 6000 Jahre Kulturgeschichte. Hirmer Verlag München

    Google Scholar 

  • Bachmann HG, Jockenhövel A (1974) Zu den Stabbarren aus dem Rhein bei Mainz. Archäol Korr-Blatt 4:139–144

    Google Scholar 

  • Bachmann HG, Hammer P (2003) Vergleichende metallanalytische Untersuchungen an römischen Denaren aus der 2. Hälfte des 2. Jahrhunderts n. Chr. In: Stribrny K (ed) Funktionsanalyse barbarisierter, barbarischer Denare mittels numismatischer und metallurgischer Methoden. Zur Erforschung der sarmatisch-germanischen Kontakte im 3. Jahrhundert n. Chr. Stud, vol 18. Fundmünzen der Antike (SFMA), Mainz, pp 107–133

    Google Scholar 

  • Bamberger M, Wincierz P, Bachmann HG, Rothenberg B (1986) Ancient smelting of oxide copper ore: archaeological evidence at Timna and experimental approach. Metallwissenschaft + Technik 40:1166–1174

    Google Scholar 

  • Bamberger M, Wincierz P (1990) Ancient smelting of oxide copper Ore. In: Rothenberg B (ed) Researches in the Arabah 1959-1984, vol II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 123–157

    Google Scholar 

  • Bar-Adon P (1980) The cave of the treasure: the finds from the caves in Naḥal Mishmar. Israel Exploration Soc, Jerusalem

    Google Scholar 

  • Barnes R, Stein EN, Diebold B (2015) Gold in early Southeast Asia. Selected Papers from the Symposium Gold in Southeast Asia. Yale University Art Gallery 2011

    Google Scholar 

  • Bassiakos Y, Catapotis M (2006) Reconstruction of the copper smelting process at Chrysokamino based on the analysis of ore and slag samples. In: Betancourt PP (ed) The Chrysokamino metallurgical workshop and its territory, Hesperia suppl, vol 36, pp 329–353

    Google Scholar 

  • Bayley J (1984) Roman brass-making in Britain. J Hist Metall 18:42–43

    Google Scholar 

  • Bayley J (1990) The production of Brass in antiquity with particular reference to Roman Britain. In: Craddock PT (ed) 2000 years of zinc and Brass, Brit mu. Oc. Pap, vol 50, pp 7–27

    Google Scholar 

  • Begemann F, Pernicka E, Schmitt-Strecker S (1994) Metal finds from Ilipinar and the advent of arsenical copper. Anatolica XX:203–219

    Google Scholar 

  • Begemann F, Schmitt-Strecker S (2009) Über das frühe Kupfer Mesopotamiens. Extrait d’Iranica Antiqua XLIV:1–45

    Google Scholar 

  • Begemann F, Hauptmann A, Schmitt-Strecker S, Weisgerber G (2010) Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf Coast. Arab Archaeol Epigr 21:145–179

    Article  Google Scholar 

  • Bendall C, Wigg-Wolf DF, Lahaye Y, von Kaenel M, Brey GP (2009) Detecting changes of Celtic gold sources through the application of trace element and Pb isotope laser ablation analysis of Celtic gold coins. Archaeometry 51(4):598–625

    Article  Google Scholar 

  • Betancourt PP (2006a) The Chrysokamino metallurgical workshop and its territory. Hesperia suppl 36

    Google Scholar 

  • Borg G (2010) Warum in die Ferne schweifen? Geochemische Fakten und geologische Forschungsansätze zu Europas Goldvorkommen und zur Herkunft des Nebra-Goldes. In: Meller H, Bertemes F (eds) Der Griff nach den Sternen. Wie Europas Eliten zu Macht und Reichtum kamen. Tag. Landesmus. Vorgesch, Halle (Saale) 5/II, pp 735–749

    Google Scholar 

  • Born H, Hansen S (2001) Helme und Waffen Alteuropas. Sammlung Axel Guttmann. Philip von Zabern, Mainz

    Google Scholar 

  • Bourgarit D, Thomas N (2015) Ancient brasses: misconceptions and new insights. In: Hauptmann A, Modarressi-Tehrani D (eds) Archaeometallurgy in Europe III, vol 26. Proc 3rd Internat Conf June/July 2011, Deutsches Bergbau-Museum, Der Anschnitt, pp 255–261

    Google Scholar 

  • Boyle RW (1979) The geochemistry of gold and ist deposits. Geol Survey Canada Bull 280

    Google Scholar 

  • Brepohl E (2016) Theorie und praxis des Goldschmieds. Carl Hanser Verlag, München

    Google Scholar 

  • Brown MA, Blint-Stoyle AE (1959) A sample analysis of British middle and late bronze age materials using optical spectrometry. Proc Prehist Soc 25:188–208

    Article  Google Scholar 

  • Buchwald VF (2005) Iron and steel in ancient times. The Royal Danish Academy of Sciences and Letters. Historisk-filosofiske Skrifter 29

    Google Scholar 

  • Buchwald VF, Leisner P (1990) A metallurgical study of 12 prehistoric bronze objects from Denmark. J Danish Archaeol 9:64–102

    Article  Google Scholar 

  • Budd P, Ottaway BS (1991) The properties of arsenical copper alloys: implications for the development of eneolithic metallurgy. In: Budd P, Chapman B, Jackson C, Janaway R, Ottaway BS (eds) Archaeological sciences 1989, Oxbow monograph, vol 9, pp 132–142

    Google Scholar 

  • Bourgois J (2013) A review on tectonic record of strain buildup and stress release across the Andean Forearc along the Gulf of Guayaquil-Tumbes Basin (GGTB) near Ecuador-Peru border. Int J Geosci 4:618–635

    Article  Google Scholar 

  • Burnett A, Craddock PT, Meeks N (1986) Early Italian currency bars. In: Swaddling J (ed) Italian iron age artefacts in the British museum. Brit Mus, London, pp 127–130

    Google Scholar 

  • Cabri L, Harris DC, Weiser TW (1996) Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Explor Min Geol 5(2):73–167

    Google Scholar 

  • Caneva C, Palmieri AM (1983) Metalwork at Arslantepe in late chalcolithic and early bronze age I: the evidence from metal analyses. Origini XII 2:637–654

    Google Scholar 

  • Celis G (1991) Eisenhütten in Afrika. Les fonderies africaines du fer. Museum für Völkerkunde Frankfurt am Main. Henrich, Frankfurt a.M.

    Google Scholar 

  • Charles JA (1967) Early arsenical bronzes – a metallurgical view. Am J Archaeol 71:21–26

    Article  Google Scholar 

  • Charles JA (1975) Where is the Tin? Antiquity 49:19–24

    Article  Google Scholar 

  • Charles JA (1980) The coming of copper and copper-based alloys and iron: a metallurgical sequence. In: Wertime TA, Muhly JD (eds) The coming of the age of iron. Yale University Press, New Haven and London, pp 151–182

    Google Scholar 

  • Chase TW, Notis M, Pelton AD (2007) New Eh-pH (Pourbaix) diagrams of the copper tin system. Metal 07(3):15–21

    Google Scholar 

  • Chernykh EN (1992) Ancient metallurgy in the USSR. The early metal age. Cambridge University Press

    Google Scholar 

  • Chernykh EN (2011) Eurasian steppe belt: radiocarbon chronology and metallurgical provinces. In: Yalçın Ü (ed) Anatolian metal V, Der Anschnitt Beih, vol 24, pp 151–171

    Google Scholar 

  • Chirikure S, Hall S, Miller D (2007) One hundred years on: what do we know about tin and bronze production in southern Africa? In: La Niece S, Hook D, Craddock P (eds) Metals and mines, Studies in archaeometallurgy. Archetype Publ Brit Mus, pp 112–119

    Google Scholar 

  • Cleuziou S, Berthou T (1982) Early tin in the near east: a reassessment in the light of new evidence from Afghanistan. Expedition 24(3):14–19

    Google Scholar 

  • Cooke SRB, Aschenbrenner S (1975) The occurrence of metallic iron in ancient copper. J Field Archaeol 2:251–266

    Google Scholar 

  • Cox DP (1986) Descriptive model of W skarn deposits. In: Cox DP, Singer DA (eds) Mineral deposit models, US Geolog Surv Bull 1693, p 55

    Google Scholar 

  • Craddock PT (1976) The composition of the copper alloys used by the Greek, Etruscan and Roman Civilisations. 1. The Greeks before the archaic period. J Archaeol Sci 3:93–113

    Article  Google Scholar 

  • Craddock PT (1977) Dto., 2. The archaic, classical and Hellenistic Greeks. J Archaeol Sci 4:103–123

    Article  Google Scholar 

  • Craddock PT (1978) Dto., 3. The origins and early use of Brass. J Archaeol Sci 3:93–113

    Article  Google Scholar 

  • Craddock PT (2000a) Assaying in antiquity. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit Mus Press, London, pp 245–250

    Google Scholar 

  • Craddock PT (2000b) From hearth to furnace: evidences for the earliest metal smelting technologies in the Eastern Mediterranean. Paléorient 26(2):151–165

    Article  Google Scholar 

  • Craddock PT (2000c) Historical survey of gold refining. 1 Durface treatments and refining worldwide, and in Europe prior to AD 1500. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit. Mus. Press, London, pp 27–53

    Google Scholar 

  • Craddock PT (2000d) Historical survey of gold refining. 2 post medieval period. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit. Mus. Press, London, pp 54–71

    Google Scholar 

  • Craddock PT (2000e) The platinum group element inclusions. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit Mus Press, London, pp 238–244

    Google Scholar 

  • Craddock PT (2013a) Tarteso y la Explotatión Minera. Local traditions and foreign contacts: innovation in Tartessian metallurgy. In: Alvar J, Campos Carrasco JM (eds) Acta Congreso Tartesso. Editores Tarteso. El emporio del metal. Almuzara, Huelva, pp 231–268

    Google Scholar 

  • Craddock PT (2013b) Archaeometallurgy 1962-2013: the establishment of a discipline. J Hist Metall Soc 47(1):1–12

    Article  Google Scholar 

  • Craddock PT (2013c) Two millennia of the sea-Bourne metalstrade with India. Ind J Hist Sci 48(1):1–37

    Google Scholar 

  • Craddock PT, Freestone IC, Hunt Oriz M (1987) Recovery of silver from speiss at Rio Tinto (Spain). Inst Archaeometall Stud Newsl 10/11:8–11

    Google Scholar 

  • Craddock PT, Meeks N (1987) Iron in ancient copper. Archaeometry 29:187–204

    Article  Google Scholar 

  • Craddock PT, Freestone I (1988) Debris from metallurgical activities at site 200. In: Rothenberg B (ed) The mining temple at Timna. Res in the Arabah 1959-1964 I, Inst Archaeo-Met Studies. UCL, London, pp 192–203

    Google Scholar 

  • Craddock PT, Eckstein K (2003) Production of Brass in antiquity by direct production. In: Craddock PT, Lang J (eds) Mining and metal production through the ages. Brit Mus Press, London, pp 216–230

    Google Scholar 

  • Curtis J (2012) The Oxus treasure. The British Museum Objects in Focus, London

    Google Scholar 

  • Davies O (1935) Roman Mines in Europe. Oxford, Clarendon Press. (1935) Antimony bronze in Central Europe. Man 91: 86–89

    Google Scholar 

  • Dayton J (1978) Minerals metals glazing & man. Harrap, London

    Google Scholar 

  • Dies K (1967) Kupfer und Kupferlegierungen in der Technik. Springer, Berlin

    Book  Google Scholar 

  • Dill H, Melcher A, Weber B, Bäumler W (2010) Post-Miocene and bronze age supergene Cu-Pb-arsenate-humate-axalate-carbonate mineralization at mega Livadi, Serifos, Greece. Can Mineral 48:163–181

    Article  Google Scholar 

  • Di Nocera GM, Hauptmann A, Palmieri A (2004) I metallic della Tomba Reale e la metallurgia agli albori del III millennio. In: Frangipane M (ed) Alle origini del potere. Arslantepe, la collina dei Leoni. Electa, Roma, pp 123–143

    Google Scholar 

  • Dumas F (1972) Trente Siècles sous la Mer, Paris

    Google Scholar 

  • Earl B (1985) “Melting tin” in the West of England: a study of an old art. J Hist Metall 19(2):153–161

    Google Scholar 

  • Earl B (1986) Melting tin in the West of England: part 2. J Hist Metall 20(1):17–32

    Google Scholar 

  • Ehser A, Borg G, Pernicka E (2011) Provenance of the gold of the early bronze age nebra sky disk, central Germany: geochemical characterization of natural gold from Cornwall. Eur J Miner 23(6):895–910

    Article  Google Scholar 

  • Éluère C (1986) A prehistoric touchstone from France. Gold Bull 19(2):58–61

    Article  Google Scholar 

  • Éluère C, Raub CJ (1991) Investigation on the gold coating technology of the great dish from Varna. In: Mohen JP, Éluère C (eds) Découverte du Métal. Picard, Paris, pp 13–30

    Google Scholar 

  • Erdrich M (1995) Zur Herstellung von Hemmoorer Eimern. In: STA M (ed) Acta of the 12th international congress on ancient bronzes Nijmegen 1992. Nederland. Archeol Rapp 18. Rijksdienst voor het Oudheidkundig Bodemonderzoek, Amersfort, pp 33–38

    Google Scholar 

  • Forbes RJ (1950) Metallurgy in antiquity. Brill, Leiden

    Google Scholar 

  • Furger AR, Riederer J (1995) Aes und aurichalcum: empirische Beurteilungskriterien für Kupferlegierungen und metallanalytische Untersuchungen an Halbfabrikaten und Abfällen aus metallverarbeitenden Werkstätten in Augusta Raurica. Jb Augst und Kaiseraugst 16:115–180

    Google Scholar 

  • Gale NH (2006) Lead isotope studies – Sardinia and the mediterranean. Provenance studies of artefacts fund in Sardinia. Instrumentum 23:4–9

    Google Scholar 

  • Gale NH, Stos-Gale ZA (1981b) Ancient Egyptian silver. J Egypt Archaeol 67:103–115

    Article  Google Scholar 

  • Gale NH, Papastamataki A, Stos-Gale ZA, Leonis K (1985) Copper sources and copper metallurgy in the Aegean bronze age. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Occ Papers, vol 48, pp 81–102

    Google Scholar 

  • Gale NH, Bachmann HG, Rothenberg B, Stos-Gale ZA, Tylecote RF (1990) The adventitious production of Iron in the smelting of copper. In: Rothenberg B (ed) Researches in the Arabah 1959–1984, II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 182–191

    Google Scholar 

  • Gambaschidze O, Gambaschidze I (1995) Die Hauptergebnisse der Meskhet-Dschawareti Expedition von 1987. In: Polewije Archaeologitscheski Issledowanija w 1987 godu, Tbilissi. (Russian language)

    Google Scholar 

  • Gambaschidze I, Hauptmann A, Slotta R, Yalçın Ü (eds) (2001) Georgien. Schätze aus dem Land des Goldenen Vlies. Ausstellungskatalog des Deutschen Bergbau-Museums Bochum

    Google Scholar 

  • Ganzelewski M (2000) Archäometallurgische Untersuchungen zur frühen Verhüttung von Raseneisenerzen am Kammberg bei Joldelund, Kreis Nordfriesland. In: Haffner A, Jöns H, Reichstein J (eds) Frühe Eisengewinnung in Joldelund, Kreis Nordfriesland. Ein Beitrag zur Siedlungs- und Technikgeschichte Schleswig-Holsteins, vol 59. Universitätsforsch Prähist Archäol, p 3

    Google Scholar 

  • Garner J (2014) Das Zinn der Bronzezeit in Mittelasien II: Die montanarchäologischen Forschungen an den Zinnlagerstätten. Archäolog Iran Turan, Von Zabern, Darmstadt

    Google Scholar 

  • Gebhard R (1995) Industry in Celtic Oppida – aspects of high temperature processes. In: Morteani G, Northover JP (eds) Prehistoric gold in Europe. Mines, metallurgy and manufacture, NATO ASI series E: applied sciences, vol 280. Kluwer Academic Publ, Dordrecht, pp 261–272

    Google Scholar 

  • Gebhard R et al (1995) Coin moulds and other ceramic material: a key to celtic precious metal working. In: Morteani G, Northover JP (eds) Prehistoric gold in Europe. Mines, metallurgy and manufacture, NATO ASI series E: applied sciences, vol 280. Kluwer Academic Publ., Dordrecht, pp 273–301

    Google Scholar 

  • Gebhard R, Krause R, Röpke A, Bähr V (2014) Das gold von Bernstorf – Authentizität und Kontext in der mittleren Bronzezeit Europas. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tag. Landesmus. Vorgesch. Halle II, pp 761–776

    Google Scholar 

  • Gevorkjan AZ (1980) Aus der Geschichte der alten Metallurgie des armenischen Berglandes, Jerewan

    Google Scholar 

  • Giumlia-Mair A, Maddin R (2004) The origins of iron. In: Nicodemi W (ed) The civilisation of iron. From prehistory to the third millennium. Olivares, Milano, pp 35–61

    Google Scholar 

  • Goldenberg G (1996) Archäometallurgische Untersuchungen zur Entwicklung des Metallhüttenwesens im Südschwarzwald (Blei, Silber, Kupfer - Frühgeschichte bis 19. Jahrhundert). Archäol u Gesch 8, Sigmaringen

    Google Scholar 

  • Gontscharov A (2019) Metall der bronzezeitlichen Kulturen aus Zentral- und Ostkasachstan. PhD-diss Ruhr Univers Bochum

    Google Scholar 

  • Gopher A, Tsuk T, Shalev S, Gophna R (1990) Earliest gold artefacts in the Levant. Curr Anthropol 31:436–443

    Article  Google Scholar 

  • Gowland W (1899) The early metallurgy of copper, tin and iron in Europe, as illustrated by ancient remains and the primitive processes surviving in Japan. Archaeologia 56(2):267–322

    Google Scholar 

  • Guerra MF, Rehren T (2009) AURUM: Archaeometry and authenticitation of gold, Archaeosciences. revue d’archéométrie 33. Presses Universitaires de Rennes, pp 13–18

    Google Scholar 

  • Hammer P (1998) Verfahrenstechnische Untersuchung. Bericht zu Römische und germanische Bunt- und Edelmetallfunde im Vergleich. Archäometallurgische Untersuchungen ausgehend von elbgermanischen Körpergräbern. Ber Röm-German Kommisssion 79:179–199

    Google Scholar 

  • Hammer P, Voß HU (2000) Zur Gruppierung von Kupferlegierungen – Der Terminus “Aes” bei Plinius. Meta 7(1):23–32

    Google Scholar 

  • Hanel N, Rothenhöfer P, Bode M, Hauptmann A (2013a) Nach der Schlacht von Lugdunum (197 n. Chr.). Britannisches Blei auf dem Weg nach rom. Chiron 43:297–325

    Google Scholar 

  • Hanel N, Rothenhöfer P, Bode M, Hauptmann A (2013b) Britannisches Blei auf dem Weg nach rom. Die Metallversorgung der Reichsmetropole am Beginn der Herrschaft des L Septimius Severus Skyllis 13:38–42

    Google Scholar 

  • Hanel N, Bode M (2016) Messingbarren aus einem römischen Schiffswrack bei Aléria (Korsika). Der Anschnitt Beih 29:167–181

    Google Scholar 

  • Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill, New York

    Book  Google Scholar 

  • Hartley AJ, Rice CM (2005) Controls of supergene enrichment of porphyry copper deposits in the Central Andes: a review and discussion. Mineral Deposita 40(5):515–525

    Article  Google Scholar 

  • Hartmann A (1970) Prähistorische Goldfunde aus Europa – Spektralanalytische Untersuchungen und deren Auswertung. Studien zu den Anfängen der Metallurgie 3. Berlin

    Google Scholar 

  • Hartmann A (1982) Prähistorische Goldfunde aus Europa II – Spektralanalytische Untersuchungen und deren Auswertung. Studien zu den Anfängen der Metallurgie 5. Berlin

    Google Scholar 

  • Hauptmann A (1985) 5000 Jahre Kupfer in Oman 1: die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit Der Anschnitt Beih 4

    Google Scholar 

  • Hauptmann A (1989) Chemical analyses of prehistoric metal Artefacts from the Indian subcontinent. Jb Röm German Zentralmus 36(1):261–267

    Google Scholar 

  • Hauptmann A (2007) The early metallurgy of copper. Evidence fom Faynan, Jordan. In: Wagner GA, Herrmann B (eds) Natural science in archaeology. Springer, Heidelberg

    Google Scholar 

  • Hauptmann A, Pernicka E, Lutz J, Yalçın Ü (1993) Zur Technologie der frühesten Verhüttung von Kupfererzen im östlichen Mittelmeerraum. In: Frangipane M, Hauptmann H, Liverani M, Matthiae P, Mellink M (eds) Between the Rivers and over the mountains: Archaeologica Anatolica et Mesopotamica Alba Palmieri Dedicata. Univers di Roma “La Sapienza”, pp 541–572

    Google Scholar 

  • Hauptmann A, Pernicka E, Wagner GA (1988) Untersuchungen zur Prozeßtechnik und zum Alter der frühen Blei-Silbergewinnung auf Thasos. In: Wagner GA, Weisgerber G (eds) Antike Blei-Silbergewinnung auf Thasos, Der Anschnitt Beih, vol 6, pp 88–112

    Google Scholar 

  • Hauptmann A, Gambaschidze I (2001) Antimon – eine metallurgische Besonderheit aus dem Kaukasus. In: Gambaschidze I, Hauptmann A, Slotta R, Yalçın Ü (eds) Georgien. Schätze aus dem Land des Goldenen Vlies. Exhibition Catalogue Deutsches Bergbau-Museum Bochum, pp 150–155

    Google Scholar 

  • Hauptmann A, Schmitt-Strecker S, Begemann F, Palmieri A (2002a) Chemical composition and lead isotopy of metal objects from the “royal” tomb and other related finds from Arslantepe, eastern Anatolia. Paléorient 28(2):43–70

    Google Scholar 

  • Hauptmann A et al (2010) Gold in Georgien. Analytische Untersuchungen an Goldartefakten und an Naturgold aus dem Kaukasus und dem Transkaukasus. In: Hansen S, Hauptmann A, Motzenbäcker I, Pernicka E (eds) Von Majkop nach Trialeti – Gewinnung und Verbreitung von Metallen und Obsidian in Kaukasien im 4.-2, Jahrtausend v. Chr. Beitr Internat Symp Berlin June 2006, Habelt, Bonn. Kolloquien zur Vor- und Frühgeschichte, vol 13, pp 139–160

    Google Scholar 

  • Hauptmann A, Schmitt-Strecker S, Levy TE, Begemann F (2015) On early bronze age copper Bar ingots from the southern Levant. Bull Am Soc Orient Res 373:1–24

    Google Scholar 

  • Hauptmann A, Schneider G, Bartels C (2016) The shipwreck of Bom Jesus, AD 1533: Fugger copper in Namibia. J Afr Archaeol 14(2):181–207

    Google Scholar 

  • Hauptmann A, Klein S, Paoletti P, Zettler RL, Jansen M (2018) Types of gold, types of silver: the composition of precious metal artifacts found in the Royal Tombs of Ur. Mesopotamia Zeitschr Assyriologie 108(1):100–131

    Google Scholar 

  • Hedges ES (1964) Tin in social and economic history. Arnold, London

    Google Scholar 

  • Hess K, Hauptmann A, Wright H, Whallon R (1998) Evidence of fourth millennium BC silver production at Fatmali-Kaleçik. In: Rehren T, Hauptmann A, Muhly JD (eds) Metallurgica Antiqua. In honour of HG Bachmann and R Maddin, Der Anschnitt Beih, vol 8, pp 57–67

    Google Scholar 

  • Hezarkhani Z, Keesmann I (1996) Archäometallurgische Untersuchungen an Kupferschlacken aus dem Zentraliran. Meta 3(2):101–125

    Google Scholar 

  • Higham CFW, Douka K, Higham TFG (2015) A new chronology for the bronze age of northeastern Thailand and its implications for southeast Asian prehistory. PLoS One 10(9). https://doi.org/10.1371/J.pone.0137542

  • Hochuli-Gysel A, Picon M (1999) Les creusets en graphite dècouverts à Avenches/Aventicum. Bull de l’Assoc pro Avertico 41:209–214

    Google Scholar 

  • Hornbogen E, Warlimont H (1991) Metallkunde. Aufbau und Eigenschaften von Metallen und Legierungen. Springer, Berlin

    Google Scholar 

  • Horne L (1982) Fuel for the metalworker: the role of charcoal and charcoal production in ancient metallurgy. Expedition 25:6–13

    Google Scholar 

  • Horstmann D (1985) Das Zustandsschaubild Eisen-Kohlenstoff. Stahl & Eisen, Düsseldorf

    Google Scholar 

  • Hosking KFG (1988) The World’s major types of tin deposits. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, pp 3–49

    Google Scholar 

  • Hosler D (1994) The sounds and colors of power. The sacred metallurgical Technology of Ancient West Mexico. MIT Press, London

    Google Scholar 

  • Hummel R (1998) Understanding materials science, History. Properties. Applications. Springer

    Google Scholar 

  • Hutchison CS (ed) (1988) Geology of tin deposits in Asia and the Pacific, Mineral concentrations and hydrocarbon accumulations in the ESCAP region 3. Springer, Berlin

    Google Scholar 

  • Ingo GM, de Caro T, Bultrini G (2004a) Microchemical investigation of archaeological copper based Artefacts disclosing an ancient witness of the transition from the value of the substance to the value of the appearance. Microchim Acta 144:87–95

    Article  Google Scholar 

  • Ingo GM, Angelini E, de Crao T, Bultrini G, Mezzi A (2004b) Microchemical investigation of archaeological copper-based artefacts used for currency in ancient Italy before the coinage. Surf Interface Anal 36:866–870

    Article  Google Scholar 

  • Jansen M (2019) Geochemie und Archäometallurgie des Goldes der Bronzezeit in Vorderasien. PhD-diss, Fac Geoscience, Ruhr Univers Bochum

    Google Scholar 

  • Jansen M et al (2016) Platinum group placer minerals in ancient gold artifacts – geochemistry and osmium Isotopy of inclusions in early bronze age gold from Ur/Mesopotamia. J Archaeol Sci 68:12–23

    Article  Google Scholar 

  • Jianli C, Rubin H (2013) Manufacturing techniques and dates of iron objects found recently at Chinese archaeological sites. In: Humphries J, Rehren T (eds) The world of Iron. Archetype Publications, London, pp 345–354

    Google Scholar 

  • Junghans S, Sangmeister E, Schröder M (1960) Metallanalysen kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa. Studien zu den Anfängen der Metallurgie 1. Mann, Berlin

    Google Scholar 

  • Junghans S, Sangmeister E, Schröder M (1968) Kupfer und bronze in der frühen Metallzeit Europas 1–3. Mann, Berlin

    Google Scholar 

  • Junghans S, Sangmeister E, Schröder M (1974) Kupfer und bronze in der frühen Metallzeit Europas 4. Mann, Berlin

    Google Scholar 

  • Junk SA, Pernicka E (2003) An assessment of osmium isotope ratios as a new tool to determine the provenance of gold with platinum-group metal inclusions. Archaeometry 45:313–331

    Article  Google Scholar 

  • Kamarzin L, Brezina J, Jelinkova D (1996) Metallography and Electron probe microanalysis of the material of silver Temple rings found in the Slavic cemetery at Musov, Czech Republic. Archaeol Aust 80:277–290

    Google Scholar 

  • Kaniuth K (2006) Metallobjekte der Bronzezeit aus Nordbaktrien. Archäologie in Iran und Turan 6. Mainz

    Google Scholar 

  • Kaniuth K (2007) The metallurgy of the late bronze age Sapalli culture (southern Uzbekistan) and its implication for the “tin question”. Iran Antiq 42:23–40

    Article  Google Scholar 

  • Kienlin TL, Bischoff E, Opielka H (2003) Zur Metallographie urgeschichtlicher Artefakte: Ergebnisse einer Untersuchung an Kupfer- und Bronzebeilen des nordalpinen Raumes. 37. Metallographie-Tagung der Deutschen Gesellsch. Materialkunde, September 2003, Seiten

    Google Scholar 

  • Kienlin TL, Bischoff E, Opielka H (2006) Copper and bronze during the Eneolithic and early bronze age: a metallographic examination of axes from the Northalpine region. Archaeometry 48(3):453–468

    Article  Google Scholar 

  • Kindermann A (2005) Mineralogisch-geochemische Charakterisierung hydrothermaler Goldvererzungen des Troodos-Ophiolith-Komplexes, Zypern Freiberg Forschungshefte C508

    Google Scholar 

  • Klemm R, Klemm DD (2013) Gold and gold Mining in Ancient Egypt and Nubia. Geoarchaeology of the Ancient Gold Mining Sites in the Egyptian and Sudanese Deserts. Springer

    Google Scholar 

  • Kölschbach S, Woelk G, Hauptmann A (2000) Experimente zur simulation prähistorischer Kupfergewinnung: Zur Verfahrenstechnik von Windöfen. Meta 7(1):5–22

    Google Scholar 

  • Krause R (1996) Zur Chronologie der frühen und mittleren BronzezeitSüddeutschlands, der Schweiz und Österreichs. Acta Archaeologia Kopenhagen 67:73–86

    Google Scholar 

  • Krause R (2003) Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee, Vorgeschichtl Forsch 24. Publ. M Leidorf, Rahden

    Google Scholar 

  • Kubota K (1970) Japan’s original steelmaking and its development under the influence of foreign technique. Pont à Mousson, Int. co-op. Hist. Tech. Committee 6

    Google Scholar 

  • La Niece S (1995) Depletion gilding from third millennium B.C. Ur. Iraq 57:1–7

    Article  Google Scholar 

  • Laschimke R, Burger M (2011) Archäometallurgische Experimente zum Giessen von bronzezeitlichen Ochsenhautbarren aus Kupfer. Metall 3:86–92

    Google Scholar 

  • Lechtman H (1980) The Central Andes: metallurgy without Iron. In: Wertime T, Muhly JD (eds) The coming of the age of Iron. Yale University Press, New Haven, pp 267–334

    Google Scholar 

  • Lechtman H (1988) Tradition and styles in central Andean metalworking. In: Maddin R (ed) The beginnings of the use of metals and alloys, Cambridge, MA, pp 344–378

    Google Scholar 

  • Lechtman H (1996) Arsenic bronze: dirty copper or chosen alloy? A view from the Americas. J Field Archaeol 23(4):477–514

    Google Scholar 

  • Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by Cosmelting: modern experiment, ancient Practise. J Archaeol Sci 26:497–526

    Google Scholar 

  • Lemasson Q, Moignard B, Pacheco C, Pichon L, Guerra MF (2015) Fast mapping of gold jewellery from ancient Egypt with PIXE: searching for hard-solders and PGE inclusions. Talanta 143:279–286

    Article  Google Scholar 

  • Lleras Perez R, Botero CI, Velez SL, Sanchez Cabra (2007), The art of gold. The legacy of pre-hispanic Colombia. Collection of the Gold Museum in Bogota. Banco de la Republica

    Google Scholar 

  • Leusch V, Pernicka E, Armbruster B (2014) Chalcolithic gold from Varna – provenance, circulation and function. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht – Frühes gold und Silber, 6. Mitteldeutscher Archäologentag, Oct 2013, Halle (Saale), pp 165–182

    Google Scholar 

  • Lucas A, Harris J (1967) Ancient Egyptian materials and industries. E Arnold Publ, London

    Google Scholar 

  • Maclean PI, Scaife B, de Schauensee M (1992) Hasanlu lion pins: observations on the role of antimony in bronze-making in Iron age Iran. Text for Poster Session, Berkeley, CA

    Google Scholar 

  • Maddin R (1988) The beginning of the use of metals and alloys II. MIT Press, Cambridge/MA

    Google Scholar 

  • Maddin R, Hauptmann A, Baatz D (1991) A metallographic examination of some iron tools from the Saalburgmuseum. Saalburg-Jahrb 46:5–23

    Google Scholar 

  • Martinón-Torres M, Rehren T (2002) Agricola and Zwickau: theory and practice of renaissance brass production in SE Germany. J Hist Metall 36:95–111

    Google Scholar 

  • McDonald AS, Sistare GH (1978) The metallurgy of some carat gold Jewellery alloys. Gold Bull 11(3):66–73

    Article  Google Scholar 

  • McKerell HH, Tylecote RF (1972) The working of copper–arsenic alloys in the early bronze age and the effect on the determination of provenance. Proc Soc Prehist 38:209–218

    Article  Google Scholar 

  • Meeks ND (1993) Surface characterization of tin bronze, tinned iron and arsenical bronze. In: La Niece S, Craddock P (eds) Metal plating and Patination. Cultural, technical and historical developments. Butterworth Heinemann, pp 247–275

    Google Scholar 

  • Meeks ND, Tite MS (1980) The analysis of platinum group element inclusions in gold. J Archaeol Sci 7:267–275

    Article  Google Scholar 

  • Mehrabi B, Yardley BWD, Cann JR (1999) Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Mineral Deposits 34:673–696

    Article  Google Scholar 

  • Mei J (2009) Early metallurgy in China: some challenging issues in current studies. In: Mei J, Rehren T (eds) Metallurgy and civilisation: Eurasia and beyond. Archetype Publ, London, pp 9–16

    Google Scholar 

  • Meliksetian K, Schwab R, Kraus S, Pernicka E, Brauns M (2011) Chemical, lead isotope and metallographic analysis of extraordinary arsenic-rich alloys used for jewellery in bronze age Armenia. In: Hauptmann A, Modarressi-Tehrani D, Prange M (eds) Archaeometallurgy in Europe III. Abstracts Internat Conf, Deutsches Bergbau-Museum Bochum, June 2011, pp 211–212

    Google Scholar 

  • Merkel J (1990) Experimental reconstruction of bronze age copper smelting based on archaeological evidence from Timna. In: Rothenberg B (ed) The ancient metallurgy of copper, Inst. Archaeo-Metall. Stud. University College, London, pp 78–122

    Google Scholar 

  • Merkel S (2018) Archaeometallurgical investigations of a Viking brass ingot hoard from the Hedeby Harbor in northern Germany. J Archaeol Sci 20:293–302

    Google Scholar 

  • Milton C, Dwornik E, Finkelman RB, Toulmin P III (1976) Slag from an ancient copper smelter at Timna, Israel. J Hist Metall Soc 10:24–33

    Google Scholar 

  • Miske WV (1908) Die prähistorische Ansiedlung von Velem St. Vid. Wien

    Google Scholar 

  • Mödlinger M, Sabatini B (2016) A re-evaluation of inverse segregation in prehistoric as-cu-objects. J Archaeol Sci 74:60–74

    Article  Google Scholar 

  • Moesta H (1983) Bronzezeitliche Hüttenprozesse in den Ostalpen. Naturwissenschaften 70(3):142–143

    Article  Google Scholar 

  • Mohen JP (1990) Metalurgie prehistorique: introduction a la Paleometalurgie. Masson, Paris

    Google Scholar 

  • Mongiatti A, Meeks N, Simpson SJ (2010) A gold four-horse model chariot from the Oxus treasure: a fine illustration of Achaemenid gold work. Brit Mus Technical Res Bull 4:27–38

    Google Scholar 

  • Montero-Ruiz I, Perea A (2007) Brasses in the early metallurgy of the Iberian Peninsula. In: La Niece S, Hook D, Craddock PT (eds) Metals and Mines. Studies in Archaeometallurgy. Archetype Publ. Brit. Mus, London, pp 136–139

    Google Scholar 

  • Moorey PR (1994) Ancient Mesopotamian materials and industries. The archaeological evidence. Clarendon Press, Oxford

    Google Scholar 

  • Moorey PRS, Schweizer F (1972) Copper and copper alloys in ancient Iraq, Syria and Palestine: some new analyses. Archaeometry 14:177–198

    Article  Google Scholar 

  • Müller-Karpe M (1990a) Metallgefäße des dritten Jahrtausends in Mesopotamien. Archaeol Korr Blatt 20:161–176

    Google Scholar 

  • Muhly JD (2006) Chrysokamino in the history of early metallurgy. In: Betancourt P (ed) The Chrysokamino metallurgical workshop and its territory, Hesperia suppl, vol 36, pp 155–177

    Google Scholar 

  • Muhly JD, Pernicka E (1992) Early Trojan metallurgy and metals trade. In: Herrmann J (ed) Heinrich Schliemann: Grundlagen und Ergebnisse moderner Archäologie 100 Jahre nach Schliemanns Tod. Akademie, Berlin, pp 309–318

    Google Scholar 

  • Newbury BD, Notis M, Newbury DE (2005) Revisiting the zinc comosition limit of cementation brass. J Hist Metall Soc 29(2):75–81

    Google Scholar 

  • Nezafati N, Pernicka E, Momenzadeh M (2008) Iranian ore deposits and their role in the development of the ancient cultures. In: Yalçın Ü (ed) Anatolian metal IV, Der Anschnitt Beih, vol 21, pp 77–90

    Google Scholar 

  • Nielen HD (2006) Zink oder messing? Ein Beitrag zu den metallurgischen Tätigkeiten im Legionslager Neuss. Meta 13:1

    Google Scholar 

  • Nocete F, Sáez R, Bayond MR, Nieto JM, Peramo A, López P, Gil-Ibarguchi JI (2014) Gold in the southwest of the Iberian Peninsula during the 3rd millennium BC. J Archaeol Sci 41:691–704

    Article  Google Scholar 

  • Northover P (1989) Properties and use of arsenic-copper alloys. In: Hauptmann A, Pernicka E, Wagner GA (eds) Old World Archaeometallurgy. Proc Internat Sympos, Heidelberg 1987, Der Anschnitt Beih, vol 7, pp 111–118

    Google Scholar 

  • Ogden JM (1977) Platinum group metal inclusions in ancient gold artifacts. J Hist Met Soc 2:53–72

    Google Scholar 

  • Ogden JM (1993) Aesthetic and technical considerations regarding the colour and texture of ancient goldwork. In: La Niece S, Craddock P (eds) Metal plating and patination. Butterworth/Heinemann, London, pp 39–49

    Chapter  Google Scholar 

  • Ogden JM (2000) Metals. In: Nicholson PT, Shaw I (eds) . Cambridge Univ Press, Ancient Egyptian materials and technology, pp 148–176

    Google Scholar 

  • Okamoto H, Chakrabarti DJ, Laughlin DE, Massalski TB (1987) The au-cu (gold-copper) system. Bull Alloy Phase Diagrams 8(5):454–474

    Article  Google Scholar 

  • Otto H, Witter W (1952) Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Barth, Leipzig

    Google Scholar 

  • Palmieri A, Hauptmann A (2000) Metals from Ebla: chemical analyes of metal artefacts from the bronze and iron ages. In: Matthiae P, Peyronel L, Pinnock F (eds) First Internat Congr Archaeology of the Ancient Near East. Proc Rom, Rome, pp 1259–1272

    Google Scholar 

  • Pare C (2000) Bronze and the bronze age. In: Pare CFE (ed) Metals make the world go round. Oxbow Books, Oxford, pp 1–38

    Google Scholar 

  • Parker AJ (1992) Ancient shipwrecks of the Mediterranean & the Roman provinces, Brit Archaeolog rep Internat Ser 580, Oxford

    Google Scholar 

  • Parzinger H (2016) Abenteuer Archäologie. Eine Reise durch die Menschheitsgeschichte. Beck Publ

    Google Scholar 

  • Parzinger H, Boroffka N (2003) Das Zinn der Bronzezeit in Mittelasien I. die siedlungsarchäologischen Forschungen im Umfeld der Zinnlagerstätten. Archäol Iran u Turan 5. Philipp v. Zabern, Mainz

    Google Scholar 

  • Penhallurick RD (1986) Tin in antiquity. The Institute of Metals, London

    Google Scholar 

  • Perea A, Garcia Vuelta O, Freire F (2010) El Proyecto au. Estudio arqueométrico de la producción de oro en la peninsula Ibérica, Bibl Prehist Hispana 27, Madrid

    Google Scholar 

  • Pereira F (2015) Effects of long-term aging in arsenical copper alloys. Microsc Microanal:1–7. https://doi.org/10.1017/S1431927615015263

  • Pernicka E (1993) Analytisch-chemische Untersuchungen an Metallfunden von Uruk-Warka und Kis. In: Müller-Karpe M (ed) Metallgefäße im Iraq, Prähistorische Bronzefunde II, vol 14, pp 312–316

    Google Scholar 

  • Pernicka E (1998) Die Ausbreitung der Zinnbronze im 3. Jahrtausend. In: Hänsel B (ed) Mensch und Umwelt in der Bronzezeit Europas. Oetker-Voges Verlag, Kiel, pp 135–147

    Google Scholar 

  • Pernicka E (2014a) Zur Frage der Echtheit der Bernstorfer Goldfunde. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tagungen des Landesmus Vorgesch Halle I, pp 247–256

    Google Scholar 

  • Pernicka E (2014b) Possibilities and limitations of provenance studies of ancient silver and gold. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tagungen Landesmus Vorgesch Halle I, pp 153–164

    Google Scholar 

  • Pernicka E (2014c) Provenance determination of archaeological metal objects. In: Roberts BW, Thornton CP (eds) . Springer, Archaeometallurgy in global perspective. Methods and syntheses, pp 239–268

    Google Scholar 

  • Pernicka E (2018) Science versus archaeology? The case of the Bernstorf fakes. Meta 24(2):73–80

    Google Scholar 

  • Pernicka E, Schmidt K, Schmitt-Strecker S (2002) Metallhandwerk. In: Schmidt K (ed) Norşuntepe. Kleinfunde II, Archaeologica Euphratica, vol 2. Zabern, Mainz, pp 115–137

    Google Scholar 

  • Pernicka E, Begemann F, Schmitt-Strecker S, Wagner GA (1993) Eneolithic and early bronze age copper artefacts from the Balkans and their relation to Serbian copper ores. Prähist Zeitschr 68:1–54

    Google Scholar 

  • Pernicka E, Rehren T, Schmitt-Strecker S (1998) Late Uruk silver production by cupellation at Habuba Kabira. In: Rehren T, Hauptmann A, Muhly JD (eds) Metallurgica Antiqua, In honour of HG Bachmann and R Maddin. Der Anschnitt Beih, vol 8, pp 123–134

    Google Scholar 

  • Pernicka E, Eibner C, Öztunali Ö, Wagner GA (2003) Early bronze age metallurgy in the north-East Aegean. In: Wagner GA, Pernicka E, Uermann HP (eds) Troia and the Troad. Scientific approaches. Springer, Berlin, pp 143–172

    Chapter  Google Scholar 

  • Picon M, Nezet-Celestine L, Desbat A (1995) Un type particulitiare de grands récipients en terre réfractaire utilisés pour la fabrication du laiton par cémentation. In: Rivet L (ed) Productions et importations dans le Nord-Ouest de la Gaule et relations avec la Bretagne romaine. Actualité des recherches céramiques, Soc Française d’Étude Céramique Antique en Gaule, Actes Congrès Rouen May 1995, Marseille, pp 207–215

    Google Scholar 

  • Pieth M (2019) Goldwäsche. Elster & Salis Zürich

    Google Scholar 

  • Pigott VC, Natapintu S (1988) Archaeological investigations into prehistoric copper production: the Tailand archaeometallurgy project 1984–1986. In: Maddin R (ed) The beginning of the use of alloys. MIT, Cambridge, MA, pp 156–162

    Google Scholar 

  • Pike AWG, Cowell MR, Curtis JE (1996) The use of antimony bronze in the Koban culture. J Hist Metall Soc 30(1):11–16

    Google Scholar 

  • Pike A (2002) Appendix: analysis of Caucasian metalwork – the use of Antimonal, arsenic and tin bronzes in the late bronze age. In: Curtis J, Kruszyskinna M (eds) Ancient Caucasian and related material in the British museum, Brit Mus Occ pap, vol 121, pp 87–92

    Google Scholar 

  • Pleiner R (2000) Iron in archaeology: the European Bloomery smelters. Helvetica & Tempora, Praha

    Google Scholar 

  • Plenderleith HJ (1934) The preservation of antiquities. The Museums Association, London

    Google Scholar 

  • Pollard AM, Thomas RG, Williams PA (1990) Experimental smelting of arsenical copper ores: implications for early bronze age copper production. In: Crew P, Crew S (eds) Earliy mining in the British Isles, Snowdonia, pp 72–74

    Google Scholar 

  • Prag K (1978) Silver in the Levant in the fourth millennium BC. In: Moorey J, Parr P (eds) Archaeology in the Levant: essays for Kathleen Kenyon, Warminster, pp 36–45

    Google Scholar 

  • Prechtl JJ, Karmarsch K (1838) Technologische Encyklopädie oder alphabetisches Handbuch der Technologie, der technischen Chemie und des Maschinenwesens 9: Kupfer – Metallgießerei. Cotta, Stuttgart

    Google Scholar 

  • Pryce TO et al (2014) More questions than answers: the southeast Asian Lead isotope project 2009–2012. J Archaeol Sci 42:273–294

    Article  Google Scholar 

  • Pryce TO et al (2017) High-tin bronze bowls and copper drums: non-ferrous archaeometallurgical evidence for Khao Sek’s involvement and role in regional exchange systems. Archaeol Res Asia 13:50–58

    Article  Google Scholar 

  • Rademakers FW, Rehren T, Pusch EB (2018) Bronze production in Pi-Ramesse: alloying technology and materials use. In: Ben-Yosef E (ed) Mining for ancient copper. Essays in memory of Beno Rothenberg. Tel Aviv Univ Monogr Series, vol 37. Eisenbrauns Publ, pp 503–525

    Google Scholar 

  • Radivojević M, Rehren T, Kuzmanović-Cvetković J, Marija J, Peter N (2013) Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago. Antiquity 87:1030–1045

    Google Scholar 

  • Radivojević M et al (2018) The provenance, use, and circulation of metals in the European bronze age: the state of debate. J Archaeol Res 27(2):131–185. https://doi.org/10.1007/s10814-018-9123-9

    Article  Google Scholar 

  • Ramage A, Craddock PT (2000) King Croesus’ gold. Excavations at Sardis and the history of gold refining. Brit Mus Press, London

    Google Scholar 

  • Ramdohr P (1975) Die Erzmineralien und ihre Verwachsungen. VEB-Verlag, Leipzig

    Google Scholar 

  • Rapson WS (1990) The metallurgy of the coloured carat gold alloys. Gold Bull 23(4):125–133

    Article  Google Scholar 

  • Ravich IG, Ryndina NV (1995) Early copper-arsenic alloys and the problem s of their use in the bronze age of the North Caucasus. Bull Metals Mus 23:1–18

    Google Scholar 

  • Recknagel R (1908) On some mineral deposits in the Rooiberg District. Trans Geol Soc South Africa 11:83–106

    Google Scholar 

  • Rehder JE (1989) Ancient carburization of Iron to steel. Archaeomaterials 3:27–37

    Google Scholar 

  • Rehren T (1998) Medieval lead-silver smelting in the Siegerland (West Germany). J Hist Metall 33:73–84

    Google Scholar 

  • Rehren T (1999b) Small size, large scale – Roman brass production in Germania inferior. J Archaeol Sci 26:1083–1087

    Article  Google Scholar 

  • Rehren T (2003) Crucibles as reaction vessels in ancient metallurgy. In: Craddock PT, Lang J (eds) Mining and metal production through the ages: 207–215. Brit Mus Press, London

    Google Scholar 

  • Rehren T, Hess K, Philip G (1996) Auriferous silver in Western Asia: ore or alloy? J Hist Metall 30(1):1–10

    Google Scholar 

  • Rehren T, Boscher L, Pernicka E (2012) Large scales melting of speiss and arsenical copper at early bronze age Arisman. Iran J Archaeol Sci 39(6):1717–1727

    Article  Google Scholar 

  • Reiter K (1997) Die Metalle im Alten orient unter besonderer Berücksichtigung altbabylonischer Quellen. Ugarit-Verlag, Münster

    Google Scholar 

  • Reitmaier-Naef L (2019) Copper smelting slag from the Oberhalbstein (Canton of Grisons, Switzerand). Methodological considerations on typology and morphology. In: Turck R, Stöllner T, Goldenberg G (eds) Alpine copper II – Alpenkupfer II – Rame delle Alpi II – Cuivre des Alpes II, New results and perspectives. Prehistoric copper production. Der Anschnitt Beih, vol 42, pp 229–244

    Google Scholar 

  • Riederer J (2001) Die Berliner Datenbank von Metallanalysen römischer Objekte. Berliner Beitr Archäometrie 18:139–259

    Google Scholar 

  • Riederer J (2002) Die Berliner Datenbank von Metallanalysen kulturgeschichtlicher Objekte. Antike Objekte Mitteleuropas, des Mittelmeerraumes, des Nahen und Mittleren Ostens. Berliner Beitr Archäometrie 19:72–225

    Google Scholar 

  • Roman I (1990) Copper ingots. In: Rothenberg B (ed) Researches in the Arabah 1959–1984, Vol II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 176–181

    Google Scholar 

  • Rostoker W, Pigott VC, Dvorak JR (1989a) Direct reduction to copper metal by oxide-sulfide mineral interaction. Archaeomaterials 3(1):69–87

    Google Scholar 

  • Rostoker W, Bronson B, Dvorak JR (1989b) Smelting to steel by the Japanese Tatara process. Archaeomaterials 3(1):11–25

    Google Scholar 

  • Rostoker W, Dvorak JR (1991) Some experiments with co-smelting to copper alloys. Archaeomaterials 5:5–20

    Google Scholar 

  • Ruvalcaba Sil JL, Peñuelas Guerrero G, Contreras Vargas J, Ortiz Díaz E, Hernández Vázques E (2009) Technological and material features of the gold work of Mesoamerica. ArchéoSciences 33:289–298

    Google Scholar 

  • Salzmann E (2019) Silver, copper, and bronze in early dynastic Ur, Mesopotamia: a high-resolution analysis approach Der Anschnitt Beih 41

    Google Scholar 

  • Sayre EV, Joel EC, Blackman MJ, Yener KA, Özbal H (2001) Stable lead isotope studies of Black Sea Anatolian ore sources and related bronze age and Phrygianartefacts from nearby archaeological sites. Appendix: new central Taurus ore data. Archaeometry 43(1):77–115

    Article  Google Scholar 

  • Schmiderer A (2008) Geochemische Charakterisierung von Goldvorkommen in Europa. PhD-diss Naturwiss. Fak. Univers Halle-Wittenberg

    Google Scholar 

  • Schmitt-Strecker S, Begemann F (2005) Kupfer- und bronzezeitliche Artefakte vom Westbalkan: Zur Frage nach den Quellen ihres Kupfers. Prähist Zeitschr 80(1):49–64

    Article  Google Scholar 

  • Schneiderhöhn H (1962) Erzlagerstätten. Fischer, Stuttgart

    Google Scholar 

  • Schürmann E (1958) Die Reduktion des Eisens im Rennfeuer. Stahl und Eisen 19:1297–1308

    Google Scholar 

  • Scott D (1991) Metallography and microstructure of ancient and historical metals. Getty Conservation Institute/Archetype Books, Los Angeles

    Google Scholar 

  • Scott D (2002) Copper and bronze in art. Corrosion, colorants, conservation. Getty conservation Inst, Los Angeles

    Google Scholar 

  • Scott D (2012b) Ancient metals: microstructure and metallurgy II. Gold and platinum metallurgy of ancient colombia and ecuador, Createspace

    Google Scholar 

  • Scott D, Bray W (1980) Ancient platinum technology in South America. Its use by the Indians in pre-hispanic times. Platinum Metals Rev 24(4):147–157

    Google Scholar 

  • Scott D, Seeley NJ (1983) The examination of a pre-Hispanic gold chisel from Colombia. J Archaeol Sci 10:153–163

    Article  Google Scholar 

  • Selimkhanov IR (1977) Zur Frage einer Kupfer-Arsenzeit. Germania 55:1–6

    Google Scholar 

  • Shalev S (1991) Two different copper industries in the chalcolithic culture of Israel. In: Mohen JP, Éluére C (eds) Découverte du Métal. Picard, Paris, pp 413–419

    Google Scholar 

  • Shalev S (1993) The earliest gold artifacts in the southern Levant: reconstruction of the manufacturing process. In: Éluère C (ed) Outils et ateliers d’orfèvres des temps ancients. antiquités nationales mémoires, vol 2, pp 9–12

    Google Scholar 

  • Sherratt S (2000) The captive Spirit: catalogue of Cycladic antiquities in the Ashmolean museum. Oxford:76–87

    Google Scholar 

  • Smith CS, Wertime TA, Pleiner R (1967) Preliminary reports of the metallurgical project. In: Caldwell JR (ed) Investigations at Tal-i-Iblis, Illinois state museum preliminary reports 9. Springfield, III, pp 318–326

    Google Scholar 

  • Smith CS (1973) An examination of the arsenic-rich coating on a bronze age bull from Horoztepe. In: Young WJ (ed) Applicat Sc Examin arts, pp 96–102

    Google Scholar 

  • Smith CS (1981) A search for structure. Selected essays on science, art and history. MIT Press, Cambridge, MA

    Google Scholar 

  • Sperl G (1979) Zur ehemaligen Kupfergewinnung in der Radmer und im Johnsbachtal. In: Tagungsband geschichte des Erzberggebietes. Montanhist Verein Österr, Leoben, pp 135–145

    Google Scholar 

  • Spindler K (1971) Zur Herstellung der Zinnbronze in der frühen Metallurgie Europas. Acta Praehist Archaeol 2:199–253

    Google Scholar 

  • Spiridonov E, Yanakieva D (2009) Modern mineralogy of gold. In: Guerra MF, Rehren T (eds) Authentication and analysis of Goldwork, Archaeo-Sc, vol 33, pp 67–73

    Google Scholar 

  • Stöllner T et al (2013a) Zinn und Kupfer aus dem Osten Kasachstans. Ergebnisse eines deutsch-kasachischen Projekts 2003-2008. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens. Ausstellungskatalog Deutsches Bergbau-museum Bochum, pp 357–382

    Google Scholar 

  • Stöllner T et al (2013b) Metall und Metallgewinnung der bronze- und Früheisenzeit in Zentral- und Ostkasachstan. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens. Ausstellungskatalog Deutsches Bergbau-Museum Bochum, pp 383–398

    Google Scholar 

  • Stos-Gale Z, Gale N, Houghton J (1995) The origin of Egyptian copper. Lead isotope analysis of metals from El-Amarna. In: Davies WV, Schofield L (eds) Egypt, the Aegean and the Levant. Interconnections in the second millennium BC. Brit. Mus. Press, pp 127–135

    Google Scholar 

  • Strahm C (1994) Die Anfänge der Metallurgie in Mitteleuropa. Helvetia Archaeol 25:2–39

    Google Scholar 

  • Straube H (1996) Ferrum Noricum und die Stadt auf dem Magdalensberg. Springer, Wien

    Book  Google Scholar 

  • Subramanian PR, Laughlin DE (1998) The as-cu (arsenic-copper) system. Bull Alloy Phase Diagr 9(5):605–617

    Article  Google Scholar 

  • Tadmor M, Kedem D, Begemann F, Hauptmann A, Pernicka E, Schmitt-Strecker S (1995) The Nahal Mishmar hoard from the Judean Desert: technology, composition, and provenance. Atiqot XXVII:95–148

    Google Scholar 

  • Taylor R (2011) Gossans and leached cappings. Field assessment. Springer, Berlin

    Book  Google Scholar 

  • Telle R, Thönnissen M (2006) Prähistorische feuerfeste Werkstoffe und ihre Weiterentwicklung in keltischer und römischer Zeit. Prakt Metallograph 43(2):55–87

    Article  Google Scholar 

  • Tholander E (1986) Metallurgy and technology at Lapphyttan. Disc: 66–69, 105–108, 127–128. In: Jernkontorets Forskning H39, Stockholm

    Google Scholar 

  • Thornton C (2007) Of brass and bronze in prehistoric Southwest Asia. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines. Studies in archaeometallurgy, pp 123–135

    Google Scholar 

  • Thornton C (2010) The rise of arsenical copper in southeastern Iran. Iranica Antiqua XLV:31–50

    Article  Google Scholar 

  • Twaltschrelidze A (2001) Erzlagerstätten in Georgien. In: Gambaschidze I, Hauptmann A, Slotta R, Yalçın Ü (eds) Georgien – Schätze aus dem Land des Goldenen Vlies. Exhibition Catalogue Deutsches Bergbau-Mus, Bochum, pp 78–89

    Google Scholar 

  • Tylecote RF (1976) A history of metallurgy. The Metal Soc, London

    Google Scholar 

  • Tylecote RF (1980) Summary of results of experimental work on early copper smelting. In: Oddy WA (ed) Aspects of early metallurgy, Brit Mus Occ pap, vol 17, pp 5–12

    Google Scholar 

  • Tylecote RF (1983) Scottish antimony. Proc Soc Ant Scot 113:645–646

    Google Scholar 

  • Tylecote RF (1987) The early history of metallurgy in Europe. Longman Archaeology Series, London

    Google Scholar 

  • Tylecote RF (1991) Recent highlights in archaeometallurgy. In: Budd P, Chapman B, Jackson C, Janaway RC, Ottaway B (eds) Archaeological science 1989. Oxbow, Oxford, pp 194–201

    Google Scholar 

  • Tylecote RF (1992a) A history of metallurgy. Inst Materials, London

    Google Scholar 

  • Tylecote RF, Austin JN, Wraith AE (1971) The mechanism of the Bloomery process. J Iron Steel Inst 5:342–363

    Google Scholar 

  • Tylecote RF, Ghaznavi HA, Boydell PJ (1977) Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. J Archaeol Sci 4(4):305–333

    Article  Google Scholar 

  • Tylecote RF, Boydell PJ (1978) Experiments on copper smelting based upon early furnaces found at Timna. In: Rothenberg B (ed) Archaeometallurgy: chalcolithic copper smelting, Inst Archaeo-Metallurg stud Monogr 1, London, pp 27–49

    Google Scholar 

  • Tylecote RF, Merkel JF (1985) Experimental smelting techniques: achievements and future. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Occ papers, vol 48, pp 13–20

    Google Scholar 

  • Tylecote RF, Photos E, Earl B (1989) The composition of tin slags from the south-west of England. World Archaeol 20(3):434–445

    Article  Google Scholar 

  • Velasco Roldan F, Herrero JM, Suarez S, Yusta I (2013) Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geol Rev 53:181–203

    Article  Google Scholar 

  • Van Lerberghe K (1988) Copper and bronze in Ebla and in Mesopotamia. In: Waetzold H, Hauptmann H (eds) Wirtschaft und Gesellschaft von Ebla, Akten der Int tag Heidelberg Nov 1986. Heidelber Stud Alter Orient, vol 2, pp 253–255

    Google Scholar 

  • Voß HU, Hammer P, Lutz J (1998) Römische und germanische bunt- und edelmetallfunde im Vergleich. Archäometallurgische Untersuchungen ausgehend von elbgermanischen Körpergräbern. Ber Röm-German Komm 79:107–382

    Google Scholar 

  • Waetzold H (1985) Rotes gold? Oriens Antiquus XXIV(1–2):1–16

    Google Scholar 

  • Waniczek K (1986) Ein Beitrag zur Zinnmetallurgie der Bronzezeit. Alt-Thüringen 21:112–135

    Google Scholar 

  • Weisgerber G (2007) Roman brass and lead ingots from the western Mediterranean. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines. Studies in archaeometallurgy. Brit Mus and Archetype Books, London, pp 148–158

    Google Scholar 

  • Willers H (1901) Die römischen Bronzeeimer von Hemmoor, Hannover/Leipzig

    Google Scholar 

  • Wolfart R, Wittekindt H (1980) Geologie von Afghanistan, Beitr Regionale Geol Erde 14. Borntraeger, Berlin

    Google Scholar 

  • Wolters J (1986) Der gold- und Silberschmied. Rühle-Diebener-Verlag, Stuttgart

    Google Scholar 

  • Wunderlich CH, Lockhoff N, Pernicka E (2014) De Cementatione oder: Von der Kunst, das Gold nach Art der Alten zu reinigen. In: Meller H, Risch R (eds) Metalle der Macht – Frühes Gold und Silber. 6, Mitteldeutscher Archäologentag, October 2013, Halle (Saale), pp 353–366

    Google Scholar 

  • Yalçın Ü, Hauptmann A (1995) Zur Archäometallurgie des Eisens auf der Schwäbischen Alb. In: Beiträge zur Eisenverhüttung auf der Schwäbischen Alb. Forsch Vor- und Frühgesch Baden-Württemberg, vol 55, pp 269–309

    Google Scholar 

  • Yalçın Ü, Yalçın G (2008) Der Hortfund von Tülintepe, Ostanatolien. In: Yalçın Ü (ed) Anatolian metal IV, Der Anschnitt Beih, vol 21, pp 101–123

    Google Scholar 

  • Yalçın Ü, Pernicka E (1999) Frühneolithische Metallurgie von Aşıklı Höyük. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy. Proc Internat Conf “the beginnings of metallurgy”, Bochum 1995, Der Anschnitt Beih, vol 9, pp 45–54

    Google Scholar 

  • Yener A (2009) Strategic industries and tin in the ancient near east: Anatolia updated. Tüb-Ar 12:143–154

    Article  Google Scholar 

  • Zaykov VV et al (2016) Platinoid microinclusions of a native osmium Group in Ancient Gold Artifacts from Siberia and the Urals as a source of Geoarchaeological information. Archaeol Ethnol Anthropol Eurasia 44(1):93–103

    Article  Google Scholar 

  • Zwicker U (1991) Natural copper-arsenic alloys and smelted arsenic bronzes in early metal production. In: Mohen JP, Èluère C (eds) Découverte du métal. Picard, Paris, pp 331–340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauptmann, A. (2020). Metals and Alloys. In: Archaeometallurgy – Materials Science Aspects. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-030-50367-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50367-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50366-6

  • Online ISBN: 978-3-030-50367-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics