Skip to main content
Log in

The Au−Cu (Gold-Copper) system

  • Au−Cu
  • Published:
Journal of Phase Equilibria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Cited References

  • 1860Mat: A. Matthiessen, “On the Electrical Conductivity of Alloys,”Ann. Phys. Chem., 110, 190–221 (1860) in German. (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 1897Hey: C.T. Heycock and F.H. Neville, “Complete Freezing-Point Curves of Binary Alloys Containing Silver or Copper Together with Another Metal,”Philos. Trans. R. Soc. (London) A, 189, 25–69 (1897). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • Indicates key paper00Rob: W.C. Roberts-Austen and T.K. Rose, “On Certain Properties of the Alloys of the Gold-Copper Series,”Proc. R. Soc. (London) A, 67, 105–112 (1900). (Equi Diagram; Experimental)

    Google Scholar 

  • 01Mae: E. Maey, “Specific Volume as Determination Characteristics of Chemical Bonding of Alloys,”Z. Phys. Chem., 38, 292–306 (1901) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 06Kur: N.S. Kurnakov and S.F. Zemczuzny, “Isomorphous Mixture of Copper and Gold. Electrical Conductivity of Metallic Solid Solutions,”J. Russ. Phys. Chem. Soc., 7, 1048–1050 (1906);Chem. Abstr., 1(9) 1115 (1907). (Equi Diagram; Experimental)

    Google Scholar 

  • 07Kur1: N.S. Kurnakov and S.F. Zemczuzny, “Alloys of Copper with Nickel and Gold. Electrical Conductivity of Solid Metallic Solutions,”Zh. Russ. Fiz.-Khim. Obshchestva, 39, 211–219 (1907) in Russian; TR:Z. Anorg. Chem., 54, 149–169 (1907) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 07Kur2: N.S. Kurnakov and S.F. Zemczuzny, “Hardness of Metallic Solid Solutions and Chemical Compounds,”Zh. Russ. Fiz.-Khim. Obshchestva, 39, 1148 (1907) in Russian; TR:Z. Anorg. Chem., 60, 1–37 (1908) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 10Rud: E. Rudolfi, “Thermoelectricity of Alloys, I,”Z. Anorg. Chem., 67, 68–96 (1910) in German (Equi Diagram; Experimental)

    Google Scholar 

  • Indicates key paper15Kur: N.S. Kurnakov, S.F. Zemczuzny, and M. Zasedatelev, “Transformation in the Alloys of Gold with Copper,”Zh. Russ. Fiz.-Khim. Obshchestva, 47, 871–897 (1915) in Russian; TR:J. Inst. Met., 15, 305–331 (1916). (Equi Diagram; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 17Bor: G. Borelius, “Thermoelectric Properties as a Method of Analysis for Alloys of the Solid Solution Type,”Ann. Phys., 53, 615–628 (1917) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 19Sed: E. Sedstrom, “Peltier Effect, and Thermal and Electrical Conductivities of Some Solid Metallic Solutions,”Ann. Phys., 59, 134–144 (1919) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 19Tam: G. Tamman, “The Chemical and Galvanic Properties of Alloy States and their Atomic Configurations,”Z. Anorg. Chem., 107, 1–239 (1919) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 22Kir: F. Kirchner, “Experiments on Structure with X-Rays,”Ann. Phys., 69, 59–80 (1922) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 23Bai1: E.C. Bain, “The Nature of Solid Solutions,”Chem. Met. Eng., 28, 21–24 (1923). (Equi Diagram; Experimental)

    Google Scholar 

  • 23Bai2: E.C. Bain, “Cored Crystals and Metallic Compounds,”Chem. Met. Eng., 28, 67–68 (1923). (Equi Diagram; Experimental)

    Google Scholar 

  • 23Bai3: E.C. Bain, “Crystal Structure of Solid Solutions,”Trans. AIME, 68, 637–638 (1923). (Crys Structure; Experimental)

    Google Scholar 

  • 24Sed: E. Sedstrom, “Gold-Copper Alloys,”Ann. Phys., 75, 549–555 (1924). (Equi Diagram; Experimental)

    Google Scholar 

  • 25Joh: C.H. Johansson and J.O. Linde, “A Roentgenographic Determination of the Atomic Arrangement in the Mixed Crystal Series Au−Cu and Pd−Cu,”Ann. Phys., 78(21), 439–460 (1925) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 25Lan: H. Lange, “X-Ray Spectroscopic Studies of Several Metal Alloys by the Method of Seeman-Bholin,”Ann. Phys., 76(5), 476–492 (1925) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 26Phr: G. Phragmen, “Solid Solution and Chemical Compound,”Tek. Tidskr., 56, 81–85 (1926);Fysisk Tids., 24, 40–41 (1926). (Crys Structure; Experimental)

    Google Scholar 

  • 27Joh: C.H. Johansson and J.O. Linde, “Lattice Structure and Electrical Conductivity of the Mixed-Crystal System, Gold-Copper, Palladium-Copper and Platinum-Copper,”Ann. Phys., 82(4), 449–478 (1927) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 28Ark: A.E. von Arkel and J. Basart, “Atomic Distances in Mixed Crystals of Gold and Copper,”Z. Krist., 68(4/5), 475–476 (1928) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 28Bor: G. Borelius, C.H. Johansson, and J.O. Linde, “Transformation in the Lattice Structure of Metallic Solid Solutions,”Ann. Phys., 86(10), 291–318 (1928) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 28Gor: V.S. Gorsky, “X-Ray Investigation of the Changes in the Alloy Copper-Gold,”Z. Phys., 50, 64–81 (1928). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 28Leb: M. LeBlanc, K. Richter, and E. Schiebold, “A Test of Tammann's Theory of Resistance Limit with the System: Gold-Copper. A New Point of View,”Ann. Phys., 86, 929–1005 (1928) in German. (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 28Smi: C.S. Smith, “Note on the Crystal Structure of Copper-Gold Alloys,”Mining and Met, 9, 458–459 (1928). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 28Veg: L. Vegard and H. Dale, “An Investigation of Mixed Crystals and Alloys,”Z. Kristallogr., 67, 148–161 (1928) in Diagram. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 30Deh: U. Dehlinger and L. Graf, “The Rearrangement of a Solid Metallic Phase,”Z. Phys., 64, 359–377 (1930) in German. (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 30Kaw: M. Kawakami, “A Further Investigation of the Heat of Mixture in Molten Metals,”Sci. Rep. Tohoku Univ, 19, 521–549 (1930). (Thermo; Experimental)

    Google Scholar 

  • 300sh: K. Oshima and G. Sachs, “Investigation of Gold-Copper alloys by Means of X-Rays,”Z. Phys., 63, 210–223 (1930) in German. (Crys Structure; Experimental)

    ADS  Google Scholar 

  • Indicates key reference31Gru: G. Grube, G. Schoenmann, F. Vaupel, and W. Weber, “The Equilibrium Diagram of Copper-Gold Alloys,”Z. Anorg. Chem., 201, 41–74 (1931) in German. (Equi Diagram; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • Indicates key reference31Hau: J.L. Haughton and R.J.M. Payne, “Transformations in the Gold-Copper Alloys,”J. Inst. Met., 46, 457–480 (1931). (Equi Diagram; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 31Kur: N.S. Kurnakov and N.V. Ageev, “Physico-Chemical Study of the Gold-Copper Solid Solutions”J. Inst. Met., 46, 481–506 (1931). (Equi Diagram; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 31Pre: G.D. Preston, “X-Ray Examination of Gold-Copper Alloys,”J. Inst. Met., 46, 477–478 (1931). (Crys Structure; Experimental)

    Google Scholar 

  • 31Sac: G. Sachs and J. Weerts, “Atom Arrangement and Properties,”Z. Phys., 67, 507–515 (1931) in German. (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 32Deh: U. Dehlinger and L. Graf, “Transformations in Gold-Copper System,”Z. Metallkd., 24, 248–253 (1932) in German. (Crys Structure; Experimental)

    Google Scholar 

  • 32Kur: N.S. Kurnakov and N.V. Ageev, “Physico-Chemical Study of the Gold-Copper Solid Solutions”J. Inst. Met., 48, 312–313 (1932);Izv. Inst. Fiz.-Khim. Anal., 6, 25–46 (1933). (Equi Diagram; Experimental)

    Google Scholar 

  • 32Leb: M. LeBlanc and G. Wehner, “Transformations in the Solid Phase in the System: Copper-Gold,”Ann. Phys., 14, 481–509 (1932) in German. (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 32Wag: C. Wagner and G. Engelhardt, “Thermodynamic Activities in Binary Alloys,”Z. Phys. Chem. A, 159, 241–267 (1932 in German. (Thermo; Experimental)

    Google Scholar 

  • 34Bro1: W. Bronievski and K. Wesolowski, “Structures of Gold-Copper Alloys,”Compt. Rend. 198, 370–372 (1934) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 34Bro2: W. Bronievski and k. Wesolowski, “Mechanical Properties of Gold-Copper Alloys,”Compt. Rend., 198, 569–571 (1934) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 34Veg: L. Vegard and A. Kloster, “Gold-Copper Alloys, Especially at High Temperatures,”Z. Krist., 89, 560–574 (1934) in German. (Crys Structure; Experimental)

    Google Scholar 

  • 35Bro: W. Bronievski and K. Wesolovski, “Gold Copper Alloy,”Ann. Acad. Sci. Tech. Varsovie, 1, 44–69 (1935). (Equi Diagram; Experimental)

    Google Scholar 

  • 35Leb: M. LeBlenc and G. Wehner, “On the Gold Copper Alloys,”Ann. Phys., 23, 570 (1935) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 35Mei: W. Meiyer, Diss., Munster (1935), as cited in [Hultgren, B]. (Thermo; Experimental)

  • Indicates key paper36Joh: C.H. Johansson and J.O. Linde, “Roentgenographic and Electrical Investigations of the Cu−Au System,”Ann. Phys., 25, 1–48 (1936) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 36Syk1: C. Sykes and H. Evans, “The Transformations in the Copper-Gold Alloy Cu3Au,”J. Inst. Met., 58, 255–281 (1936). (Equi Diagram; Experimental)

    Google Scholar 

  • 36Syk2: C. Sykes and F.W. Jones, “The Atomic Rearrangement Process in the Copper-Gold Alloy Cu3Au,”Proc. R. Soc. (London) A, 157, 213–233 (1936). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 38Hul: R. Hultgren and L. Tarnopol, “Factors Influencing Stability of Superlattices,”Nature, 141, 473–474 (1938). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 38Jon: F.W. Jones and C. Sykes, “Atomic Rearrangement Process in the Cu−Au Alloy Cu3AuII,”Proc. R. Soc. (London) A, 166, 377–390 (1938). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 38Nix: F.C. Nix and W. Shockley, “Order-Disorder Transformations in Alloys,”Rev. Mod. Phys., 10, 1–71 (1938). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 39Hul: R. Hultgren and L. Tarnopol, “Effect of Silver on the Gold-Copper Superlattice, AuCu,”Trans. AIME, 133, 228–237 (1939). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 39Tak: Y. Takagi and T. Sato, “Thermoelectric Properties of the Superlattice Alloy AuCu3,”Proc. Phys.-Math. Soc. Jpn., 21, 251–258 (1939). (Equi Diagram; Experimental)

    MATH  Google Scholar 

  • 39Wei: F. Weibke and U.F. Quadt, “The Heat of Formation and the States of Order in the System Gold-Copper,”Z. Elektrochem., 45, 715–727 (1939) in German. (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 39Wil: T.C. Wilson, “The Effect of High Pressure on the Order-Disorder Transformation in Alloys,”Phys. Rev., 56, 598–611 (1939). (Equi Diagram; Pressure; Experimental)

    ADS  Google Scholar 

  • 40Kos: W. Koster, “Elastic Moduli and Damping of Ordered Phases CuZn, AuCu3, AuCu, PdCu3 and PtCu3,”Z. Metallkd., 32, 145–150 (1940) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 40Sch: R. Schenck and H. Keuth, “The Displacement of Chemical Equilibrium States as Research Aid, Illustrated in the Copper-Roating Reaction,”Z. Electrochem., 46, 298–308 (1940). (Thermo; Experimental)

    Google Scholar 

  • 40Sie1: S. Siegel, “The Variation of the Principal Elastic Moduli of Cu3Au with Temperature,”Phys. Rev., 57, 537–545 (1940). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 40Sie2: S. Siegel, “On the Kinetics of the Order-Disorder Transformation in Cu3Au,”J. Chem. Phys., 8, 860–866 (1940). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 41Kal: O. Kallback, J. Nystrom, and G. Borelius, “Kinetics of the Order-Disorder Transformation in CuAu,”Ing. Vetenskaps Akad. Handl., (157), (1941);Met. Abstr., 9, 8 (1942). (Equi Diagram, Crys Structure; Experimental)

  • 41Kom: A. Komar and S. Sidorov, “Distribution of Atoms in the AuCu3 Alloy and the Hall Constant,”Zh. Tekh. Fiz., 11, 711–713 (1941) in Russian;Met. Abstr., 9, 8 (1942). (Equi Diagram; Experimental)

    Google Scholar 

  • 41Nix: F.C. Nix and D. MacNair, “A Dilatomic Study of the Order-Disorder Transformation in Cu−Au Alloys,”Phys. Rev., 60, 320–329 (1941). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 44Wil: Z.W. Wilchinski, “X-Ray Measurements of Order in the Alloy Cu3Au,”J. Appl. Phys., 15(12), 806–812 (1944). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 46Sid: S. Sidorov, “Influence of the Arrangement of Atoms on the Hall Effect in Alloys AuCu3 and AuCu,”Zh. Exp. Teor. Fiz., 16, 503–512 (1946). (Equi diagram; Experimental)

    Google Scholar 

  • 47Bui: N.N. Buinov, “X-Ray Investigation of the Ordering in the Au−Cu Alloy,”Zh. Eksp. Teor. Fiz., 17, 41–46 (1947) in Russian;Chem. Abstr., 42, 1099 (1948). (Crys Structure; Experimental)

    Google Scholar 

  • 47Owe: E.A. Owen and Y.H. Liu, “Thermal Expansion of the Gold-Copper Alloy AuCu3,”Philos. Mag., 38, 354–360 (1947). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 47Sid: S.K. Sidorov, “Galvano-Magnetic Properties of Some Ordered Alloys,”Izv. Akad. Nauk SSSR, Ser. Fiz., 11, 511–517 (1947). (Equi Diagram; Experimental)

    Google Scholar 

  • 48Bet: W. Betteridge, “Relation Between the Degree of Order and the Lattice Parameter of Cu3Au,”J. Inst. Met., 75, 559–570 (1948/1949). (Crys Structure; Experimental)

    Google Scholar 

  • 48Bor: G. Borelius, “On the Equilibrium and Kinetics of Order-Disorder Transformations in Alloys,”J. Inst. Met., 74, 17–31 (1948). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 48Gui: A. Guinier and R. Griffoul, “Study of the Formation of Order in the Gold Copper Solid Solution AuCu3,”Rev. Metall., 45, 387–396 (1948) in French. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 49Ben: G.E. Bennett and R.M. Davies, “An Experimental Investigation by a Dynamical Method of the Variation of Young's Modulus with Temperature,”J. Inst. Met., 75, 759–776 (1949). (Equi Diagram; Experimental)

    Google Scholar 

  • 50Bor: G. Borelius, L.E. Larsson, and H. Selberg, “Evolution of Heat During Disorder-Order Transformations in AuCu,”Arkiv. Fysik., 2, 167–170 (1950). (Thermo; Experimental)

    Google Scholar 

  • 50Cow1: J.M. Cowley, “X-Ray Measurement of Order in Single Crystals of Cu3Au,”J. Appl. Phys., 21(1), 24–30 (1950). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 50Cow2: J.M. Cowley, “An Approximate Theory of Order in Alloys,”Phys. Rev., 77(5), 669–675 (1950). (Crys Structure; Theory)

    ADS  MATH  Google Scholar 

  • 50Geg: Ya.E. Gegnin and B.Ya. Pines, “Calculated and Experimental Equilibrium Diagrams for the Simplest Binary Systems,”Dokl. Akad. Nauk, SSSR, 75(3), 387–390 (1950) in Russian. (Thermo; Theory)

    Google Scholar 

  • 50Hir: M. Hirabayashi, S. Nagasaki, and H. Maniwa, “On the Superlattice of the Cu−Au System (I),”Nippon Kinzoku Gakkai-shi B, 14(3), 1–5 (1950) in Japanese. (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 50Nys: J. Nystrom, “A Calorimetric and Resistometric Study in the Transformation in AuCu,”Arkiv Fys., 2, 151–159 (1950). (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 50Sat: T. Sato, “Effects of the Transformation Process on the Thermoelectric Power of the Superlattice Alloy Cu3Au,”J. Phys. Soc. Jpn., 5, 268–272 (1950);Met. Abstr., 19, 708 (1952). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 51Hal: L.D. Hall, “The Vapor Pressure of Gold and the Activities of Gold in Gold-Copper Solid Solutions,”J. Am. Chem. Soc., 73(2), 757–760 (1951). (Thermo; Experimental)

    Google Scholar 

  • 51Heu: T. Heumann, “The Influence of Atomic Volumes on the Heat of Formation of Alloys in Binary Metallic Systems,”Z. Metallkd., 42(6), 182–189 (1951) in German. (Thermo; Theory)

    Google Scholar 

  • 51Hir1: M. Hirabayashi, “On the Superlattices of the Cu−Au System (II),”Nippon Kinzoku Gakkai-shi B, 15, 565–571 (1951) in Japanese. (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • Indicates key paper51Hir2: M. Hirabayashi, “Existence of the Superlattice CuAu3,”J. Phys. Soc. Jpn., 6(2), 129–130 (1951). (Equi Diagram, Crys Structure; Thermo, Experimental)

    ADS  Google Scholar 

  • 51Kea: D.T. Keating and B.E. Warren, “Long-Range Order in Beta-Brass and Cu3Au,”J. Appl. Phys., 22(3), 286–290 (1951). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • Indicates key paper51Oga: S. Ogawa and D. Watanabe, “Electron Diffraction Study on the Ordered Alloy Au3Cu,”J. Appl. Phys., 22(12), 1502 (1951). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 51Rae: H. Raether, “Study of Order-Disorder Transformation in AuCu3 Alloy by Electron Diffraction,”Acta Crystallogr., 4, 70–71 (1951) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 51Sla: J.C. Slater, “Note on Superlattices and Brillouin Zones,”Phys. Rev., 84, 179–181 (1951). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 52Chi: P. Chiche, “The Standard Thermodynamic Properties of the Oxides of Copper. II. Activity of Copper in its Alloys with Gold and the Entropy of Cuprous Oxide,”Compt. Rend., 234, 830–832 (1952). (Thermo; Experimental)

    Google Scholar 

  • 52Hir: M. Hirabayashi, “On the Superlattices of the Cu−Au System. III.,”Nippon Kinzoku Gakkai-shi, 16, 67–72 (1952) in Japanese. (Crys Structure; Experimental)

    Google Scholar 

  • 52Oga: S. Ogawa and D. Watanabe, “Electron Diffraction Study on the Ordered Alloy Au3Cu,”J. Phys. Soc. Jpn., 7(1), 36–40 (1952). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 52Rae: H. Raether, “Study of Ordering Transformation of the Au−Cu Alloy AuCu3 with Electron Diffraction,”Z. Angew. Phys., 4, 53–59 (1952) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 53Lor: N.W. Lord, “On the Kinetics of the Disorder-Order Transformation in Cu3Au,”J. Chem. Phys., 21(4), 692–699 (1953). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • Indicates key paper53New: J.B. Newkirk, “Order-Disorder Transformation in Cu−Au Alloys Near the Composition CuAu,”Trans. AIME, 197, 823–826 (1953). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • Indicates key paper53Rhi: F.N. Rhines and J.B. Newkirk, “The Order-Disorder Transformation Viewed as a Classical Phase Change,”Trans. ASME, 45, 1029–1055 (1953). (Equi Diagram; Experimental)

    Google Scholar 

  • 53Sut: C.H. Sutcliffe and F.E. Jaumot, “Order-Disorder in Cu−Au Alloys. Short Range Order in an Alloy Containing 23 at.% Au,”Acta Metall., 1, 725–730 (1953). (Crys Structure; Experimental)

    Google Scholar 

  • 54Bal: D. Balesdent and M. Dode, “Experimental Determination of the Activity of Copper and Gold in Their Alloys,”Compt. Rend., 238, 2236–2238 (1954). (Thermo; Experimental)

    Google Scholar 

  • 54Hol: J.H. Hollomon and D. Turnbull, U.S. Atomic Energy Comm., Publ. SO-2031, (1954);Met. Abstr., 22, 20 (1954). (Equi Diagram; Experimental)

  • 54Jau: F.E. Jaumot and C.H. Sutcliffe, “Order-Disorder in Cu−Au Alloys. II. The Nature of the Order-Disorder Transformation and Long-Range Order,”Acta Metall., 2(1), 63–74 (1954). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • Indicates key paper54New1: J.B. Newkirk, “Discussion—Order-Disorder Transformation in Cu−Au Alloys Near the Compositon CuAu,”Trans. AIME, 200(5), 673–675 (1954). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • Indicates key paper54New2: J.B. Newkirk, “The Order-Disorder Transformation in Cu−Au Alloys Near the Composition Cu3Au,”Acta Metall., 2(7), 644–645 (1954). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • Indicates key paper54Oga1: S. Ogawa and D. Watanabe, “Electron Diffraction Study on the Ordered Alloy CuAu,”J. Phys. Soc. Jpn., 9(4), 475–488 (1954). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    ADS  Google Scholar 

  • Indicates key paper54Oga2: S. Ogawa and D. Watanabe, “On the Structure of CuAu II Revealed by Electron Diffraction,”Acta Crystallogr., 7, 377–378 (1954). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • Indicates key paper54Ori: R.A. Oriani, “Thermodynamics of Ordering Alloys. II. The Gold-Copper System,”Acta Metall., 2(7), 608–615 (1954). (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 54Rob: B.W. Roberts, “X-Ray Measurement of Order in CuAu,”Acta Metall., 2(7), 597–603 (1954). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 54Wag: C. Wagner, “Thermodynamics of the Liquidus and the Solidus of Binary Alloys,”Acta Metall., 2(3), 242–249 (1954). (Thermo; Theory)

    Google Scholar 

  • 55Bal: D. Balesdent, “Determination of the Activities of Copper and Gold in their Alloys,”Compt. Rend., 240, 760–762 (1955) in French. (Thermo; Experimental)

    Google Scholar 

  • 55Bur: F.P. Burns and S.L. Quimby, “Ordering Processes in Cu3Au,”Phys. Rev., 97, 1567–1575 (1955). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 55Fed: R. Feder and A.S. Nowick, “Anomalous Behavior of Cu3Au Quenched from above 600°C,”Phys. Rev., 98, 1152 (1955). (Crys Structure; Experimental)

    Google Scholar 

  • 55Kuc: G.C. Kuczynski, R.F. Hochman, and H. Doyama, “Study of the Kinetics of Ordering in the Alloy AuCu,”J. Appl. Phys., 26(7), 871–878 (1955). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • Indicates key paper55Rhi: F.N. Rhines, W.E. Bond, and R.A. Rummel, “Constitution of Ordering Alloys of the System Copper-Gold,”Trans. Amer. Soc. Met., 47, 578–597 (1955). (Equi Diagram; Experimental)

    Google Scholar 

  • 55Rub: L.R. Rubin, J.S. Leach, and M.B. Bever, “A Calorimetric Investigation of the Energy Relations in Alloys of Composition Cu3Au,”Trans. AIME, 203(2), 421–423 (1955). (Thermo; Experimental)

    Google Scholar 

  • 56Bor: B. Borie and B.E. Warren, “X-Ray Study of the Change in Cu3Au near 600°C,”J. Appl. Phys., 27, 1562–1563 (1956). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 56Edw: R.K. Edwards and M.B. Brodsky, “The Thermodynamics of the Liquid Solutions in the Triad Cu−Ag−Au. II. The Cu−Au System,”J. Am. Chem. Soc., 78(7), 2983–2989 (1956). (Thermo; Experimental)

    Google Scholar 

  • 56Gib: J.B. Gibson, “The Effect of Short-Range Order on Residual Resistivity,”J. Phys. Chem. Solids, 1(1), 27–34 (1956). (Crys Structure; Theory)

    ADS  Google Scholar 

  • 56Kuc: G.C. Kuczynski, M. Doyama, and M.E. Fine, “Transformations in Disordered Gold Copper Alloys,”J. Appl. Phys., 27(6), 651–655 (1956). (Equi Diagram, Crys Structure, Thermo; Experimental)

    ADS  Google Scholar 

  • 56Ori: R.A. Oriani, “Thermodynamics of Liquid Ag−Au and Au−Cu Alloys and the Question of Strain Energy in Solid Solutions,”Acta Metall., 4(1), 15–25 (1956). (Thermo; Experimental)

    Google Scholar 

  • 57Bat: B.W. Batterman, “X-Ray Study of Order in the Alloy CuAu3,”J. Appl. Phys., 28(5), 556–561 (1957). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 57Hir: M. Hirabayashi, S. Nagasaki, and H. Kono, “Calorimetric Study of Cu3Au at High Temperatures,”J. Appl. Phys., 28, 1070–1071 (1957). (Crys Structure, Thermo; Experimental)

    ADS  Google Scholar 

  • 57Nes: A.N. Nesmeyanow, L.A. Smakhtin, and V.I. Lebedev, “Measurements of Vapor Pressure of Solid Au−Ag and Au−Cu Solutions,”Dokl. Akad. Nauk SSSR, 112(4), 700–702 (1957) in Russian; TR:Phys. Chem. Sect., 112(4), 101–104 (1957). (Thermo; Experimental)

    Google Scholar 

  • Indicates key paper57Pia: A. Pianelli and R. Faivre, “X-Ray Diffraction Study of the System Gold-Copper Near Equiatomic Composition,”Compt. Rend., 245, 1537–1539 (1957). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 57Ray: J.A. Rayne, “Heat Capacity of Cu3Au below 4.2 K,”Phys. Rev., 108(3), 649–651 (1957). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 58Die: G.J. Dienes, “Lattice Parameter and Short-Range Order,”Acta Metall., 6(4), 278–282 (1958). (Crys Structure; Theory)

    Google Scholar 

  • 58Oga: S. Ogawa, D. Watanabe, H. Watanabe, and T. Komada, “The Direct Observation of the Long Period of the Ordered Alloy CuAu(II) by Means of Electron Microscope,”Acta Crystallogr., 11, 872–875 (1958). (Crys Structure; Experimental)

    Google Scholar 

  • 58Ori1: R.A. Oriani and W.K. Murphy, “Differential Calorimeter for Heats of Formation of Solid Alloys. Heats of Formation of Alloys of the Noble Metals,”J. Phys. Chem., 62, 327–331 (1958). (Thermo; Experimental)

    Google Scholar 

  • 58Ori2: R.A. Oriani and W.K. Murphy, “Thermodynamics of Ordering Alloys. III. Energies of Transformation of the Au1/2Cu1/2 Phases,”J. Phys. Chem. Solids, 6, 277–279 (1958). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 58Pas: D.W. Pashley and A.E.B. Presland, “The Observation of Anti-Phase Boundaries During the Transition from CuAuI to CuAuII,”J. Inst. Met., 87, 419–428 (1958–1959). (Crys Structure; Experimental)

    Google Scholar 

  • 59Glo: A.B. Glossop and D.W. Pashley, “The Direct Observation of Anti-Phase Domain Boundaries in Ordered Cu−Au (CuAu) Alloy,”Proc. R. Soc. A (London), 250, 132–146 (1959). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • Indicates key paper59Hir: M. Hirabayashi, “Electrical Resistivity and Superstructure of CuAu3,”J. Phys. Soc. Jpn., 14, 262–273 (1959). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • Indicates key paper59Kor: B.M. Korevaar, “The Resistivity of Ordered Au3Cu,”Physica, 25, 1021–1032 (1959). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 59Obr: J.L. O'Brien and G.C. Kuczynski, “X-Ray Study of the Kinetics of Ordering in AuCu,”Acta Metall., 7, 803–806 (1959). (Crys Structure; Experimental)

    Google Scholar 

  • 59Oga: S. Ogawa and D. Watanabe, “Anti Phase Domains in Au−Cu−Zn Ordered Alloys Revealed by Electron Microscope,”J. Phys. Soc. Jpn., 14, 936–941 (1959). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 59Oku: H. Okuzumi, P. Perio, and M. Tournarie, “Structure of Ordered Alloy of Composition Near Au3Cu,”Acta Crystallogr., 12, 1039–1043 (1959) in French. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 59Per1: P. Perio and M. Tournarie, “Diffraction of Periodic Antiphase Structure in Ordred AuCu3-Type Alloys,”Acta Crystallogr., 12, 1032–1038 (1959). (Crys Structure; Experimental)

    Google Scholar 

  • 59Per2: P. Perio and M. Tournarie, “Antiphase Structure of Ordered AuCu Alloys,”Acta Crystallogr., 12, 1044–1047 (1959). (Crys Structure; Theory)

    Google Scholar 

  • 59Pia1: A. Pianelli and R.A. Faivre, “Diagram of Gold-Copper Alloys Describing the AuCu3 Composition,”Compt. Rend., 248, 1661–1663 (1959). (Equi Diagram; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 59Pia2: A. Pianelli, “Comparative Study of the Complex Structures AuCu(II) and AuCu3II of Gold-Copper Alloys,”Compt. Rend., 248, 2475–2476 (1959). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 59Wri: P. Wright and K.F. Goddard, “Lattice Parameter and Resistivity Study of Order in the Alloy CuAu3,”Acta Metall., 7(12), 757–761 (1959). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 60Blu: M.D. Blue, “Thermoelectric Effects in Copper-Gold Alloys,”Phys. Rev., 117, 134–138 (1960). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 60Fli: P.A. Flinn, G.M. McManus, and J.A. Rayne, “Elastic Constants of Ordered and Disordered Cu3Au from 4.2 to 300°K,”J. Phys. Chem. Sol., 15, 189–195 (1960). (Crys Structure, Thermo; Experimental)

    ADS  Google Scholar 

  • 60Orr1: R.L. Orr, “Heats of Formation of Solid Au−Cu Alloys,”Acta Metall., 8(7), 489–493 (1960). (Thermo; Experimental)

    Google Scholar 

  • 60Orr2: R.L. Orr, J. Luciat-Labry, and R. Hultgren, “Energy of Order-Disorder Transformation in AuCu,”Acta Metall., 8(7), 431–434 (1960). (Thermo; Experimental)

    Google Scholar 

  • Indicates key paper.60Sco: R.E. Scott, “New Complex Phase in the Copper-Gold System,”J. Appl. Phys., 31, 2112–2117 (1960). (Equi Diagram; Crys Structure; Experimental; Indicates presence of a phase diagram)

    ADS  Google Scholar 

  • 61Bor: B. Borie, “The Separation of Short Range Order and Size Effect Diffuse Scattering,”Acta Crystallogr., 14, 472–474 (1961). (Crys Structure; Experimental)

    Google Scholar 

  • 61Dam: A.C. Damask, Z.A. Fuhrman, and E. Germagnolli, “Electrical Resistivity Changes in Annealed Cu3Au above the Critical Temperature,”J. Phys. Chem. Solids, 19(3/4), 265–280 (1961). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 61Dav: R.G. Davies and A.J. Funes, “X-Ray Study of Order in CuAu3 Alloys,”Acta Metall., 9(10), 978–979 (1961). (Crys Structure; Experimental)

    Google Scholar 

  • 61Dhe: F.M. d'Heule and P. Gordon, “Energy Changes and Kinetics of Isothermal Ordering in Au3Cu,”Acta Metall., 9(9), 304–314 (1961). (Thermo; Experimental)

    Google Scholar 

  • 61Sat: H. Sato and R.S. Toth, “Effect of Additional Elements on the Period of CuAuII and the Origin of the Long Period Superlattice,”Phys. Rev., 124(6), 1833 (1961). (Crys Structure; Theory)61Yak: H.L. Yakel, U.S. At. Energy Comm., ORNL-3160, 30–31 (1961). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 61Yam: S. Yamaguchi, D. Watanabe, and S. Ogawa, “Study of Anti-Phase Domains in Cu3Au by Means of Electron Diffraction and Electron Microscopy,”J. Phys. Soc. Jpn., 17(6), 1030–1041 (1961). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Anq: M.C. Anquetil, “Electrical Resistivity of a CuAu Alloy,”J. Phys. Radium, 23, 986–988 (1962). (Equi Diagram; Experimental)

    Google Scholar 

  • Indicates key paper62Ben: H.E. Bennett, “The Solidification Curves of the Gold-Copper System,”J. Inst. Met., 91, 158 (1962–1963). (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 62Elk: H. Elkholy and E. Nagy, “Ordering in Alloy Cu3Au. II,”J. Phys. Chem. Solids, 23(11), 1613–1619 (1962). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Jeh: G. Jehanno and P. Perio, “Structure of AuCu II,”J. Phys. Radium, 23, 845–860 (1962). (Crys Structure; Experimental)

    Google Scholar 

  • 62Nag1: E. Nagy and H. Elkholy, “Ordering in Alloy Cu3Au. II,”J. Phys. Chem. Solids, 23, 1613–1619 (1962). (Crys Structure; Experimental)

    Google Scholar 

  • 62Nag2: E. Nagy and I. Nagy, “Ordering in Alloy Cu3Au. I,”J. Phys. Chem. Solids, 23, 1605–1612 (1962). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Nei: A.R. von Neida and R.B. Gordon, “Change in Hall Coefficient During Ordering of Cu3Au,”Philos. Mag., 7, 1129–1143 (1962). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 62Sat: K. Sato, D. Watanabe, and S. Ogawa, “Electron Diffraction Study on CuAu at Temperatures above the Transition Point of Order-Disorder,”J. Phys. Soc. Jpn., 17(10), 1647–1651 (1962). (Equi Diagram, Crys Structure, Pressure; Experimental)

    ADS  Google Scholar 

  • 62Tot: R.S. Toth and H. Sato, “Long Period Superlattice Cu3Au II,”J. Appl. Phys., 33(8), 3250–3256 (1962). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Yak: H.L. Yakel, “High Temperature X-Ray Diffraction Study of the Order-Disorder Transition in a Cu-32.2 at. % Gold Alloy,”J. Appl. Phys., 33, 2439–2443 (1962). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Yam: S. Yamaguchi, D. Watanabe, and S. Ogawa, “Confirmation of Existence of Cu3Au II Using Thin Films,”J. Phys. Soc. Jpn., 17(12), 1902–1903 (1962). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 63Dav: R.G. Davies and N.S. Stoloff, “Order and Domain Hardening in Cu3Au Type Superlattice Alloys,”Acta Metall., 11, 1347–1353 (1963). (Crys Structure; Experimental)

    Google Scholar 

  • 63Mar: M.J. Marcinkowski and L. Zwell, “Transmission Electron Microscopy Study of the Off-Stoichiometric Cu3Au Superlattices,”Acta Metall., 11, 373–390 (1963). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 64Air: G. Airoldi, M. Asdente, and E. Rimini, “The Thermoelectric Power of the Alloy Cu3Au as a Function of Order,”Philos. Mag., 10, 43–48 (1964). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 64Fuj: S. Fujime, D. Watanabe, S. Ogawa, K. Fujiwara, and S. Miyake, “The Intensity of Satellite Reflections in Electron Diffraction Patterns from Evaporated Alloys with CuAuII Type Structure,”J. Phys. Soc. Jpn., 19, 1881–1892 (1964). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 64Iwa: H. Iwasaki, “On the Anti-Phase Domain Structure of the Ordered Phase CuAu3J. Phys. Soc. Jpn., 19(9), 1572–1578 (1964). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 64Jeh: G. Jehanno and P. Perio, “X-Ray Diffraction of Au−Cu II Single Crystals,”J. Phys. (Paris), 25(11), 966–974 (1964) in French. (Crys Structure; Experimental)

    Google Scholar 

  • 64Mos: S.C. Moss, “X-Ray Measurement of Short-Range Order in Cu3Au,”J. Appl. Phys., 35(12), 3547–3533 (1964). (Crys Structure; Experimental)

    ADS  MathSciNet  Google Scholar 

  • 64Tot: R.S. Toth and H. Sato, “Antiphase Domains in Ordered Au3Cu Alloys,”J. Appl. Phys., 35(3), 698–703 (1964). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 64Zai: S.A. Zaitseva and Yu.A. Priselkov, “Vapor Pressure of Copper in a Gold-Copper Alloy,”Vestn. Mosk. Univ., Ser. II, Khim., 19(6), 22–23 (1964) in Russian. (Equi Diagram; Experimental)

    Google Scholar 

  • 65Gua: G. Guarini and G.M. Schiavini, “Calorimetric Investigation of the Cu3Au Alloy above the Critical Temperature,”J. Appl. Phys., 36, 1719–1720 (1965). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 65Her: J. Hertz, “Variation of Enthalpy of Formation of the Stoichiometric Alloy AuCu3 as a Function of Temperature,”Compt. Rend., 261, 2098–2101 (1965) in French. (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 65Mos: S.C. Moss, “Local Order in Solid Alloys— Local Atomic Arrangements Studies by X-Ray Diffraction, AIME Metal. Soc. Conf., 1965, Gordon & Breach Science Publishers, New York,36, 95–122 (1966). (Crys Structure; Experimental)

    Google Scholar 

  • 65Sat: H. Sato and R.S. Toth, “Alloying Behavior and Effects in Concentrated Solid Solutions,”AIME, Metall. Soc. Conf., 1965, Gordon & Breach, Science Publishers, New York,29, 295–419 (1966). (Crys Structure; Experimental)

    Google Scholar 

  • 65Sch: N.G. Schmahl and E. Minzl, “Determination of the Copper Activities in Cu−Pt and Cu−Au Alloys by the Oxide Decomposition Pressures,”Z. Phys. Chem., 47(3–4), 164–182 (1965) in German. (Thermo; Experimental)

    Google Scholar 

  • 65War: B.E. Warren, “X-Ray Studies of Randomness in the Copper-Gold System,”Trans. AIME, 233, 1802–1810 (1965). (Crys Structure; Experimental)

    Google Scholar 

  • 65Wat: D. Watanabe, “Electron Diffraction Study of Order in the CuAu3 Alloys,”J. Phys. Soc. Jpn., 20(12), 2170–2179 (1965). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 66Cow: J.M. Cowley, “Atomic Ordering: Short-Range Order in Alloys,”J. Aust. Inst. Met., 11(4), 258–263 (1966). (Crys Structure; Theory)

    Google Scholar 

  • 66Her: J. Hertz, “Dissolution Calorimetry in Tin and its Application to the Study of Some Order-Disorder Transformations,”Mem. Sci. Rev. Met., 63(9), 781–792 (1966) in French. (Thermo; Experimental)

    Google Scholar 

  • Indicates key paper66Lu1: S.S. Lu and C.K. Liang, “Existence of the CuAu3 Long-Range Order in the Cu−Au System,”K'o Hsueh T'ung Pao, 17(9), 395–396 (1966) in Chinese. (Crys Structure; Experimental)

    Google Scholar 

  • 66Lu2: S.S. Lu and C.K. Liang, “Experimental Investigation of the Second Order Order-Disorder Transformation,”K'o Hsueh T'ung Pao, 17(11), 495–496 (1966) in Chinese. (Crys Structure; Experimental)

    Google Scholar 

  • 66Sat: H. Sato and R.S. Toth, “Antiphase Domains in Ordered Au3Cu Alloys. II. Comments on ‘Electron Diffraction Study of Order in the CuAu3 Alloys’ by Watanabe and Fisher,”J. Appl. Phys., 37, 3367–3370 (1966). (Crys Structure; Theory)

    ADS  Google Scholar 

  • 66Tac1: M. Tachiki and K. Teramoto, “Long Period Superlattice in the CuAu Alloy,”J. Phys. Chem. Sol., 27(2), 335–348 (1966). (Crys Structure, Pressure; Theory)

    ADS  Google Scholar 

  • 66Tac2: M. Tachiki, “Lattice Modulations in the CuAu Alloy,”Phys. Rev., 150(2), 440–447 (1966). (Crys Structure, Pressure; Theory)

    ADS  Google Scholar 

  • 66Tor: L.I. Van Torne, “Electron Diffraction from Disordered Cu3Au,”Phys. Status Solidi, 15, K87-K91 (1966). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 67Bje: E. Bjerkelund, W.B. Pearson, K. Selte, and A. Kjekshus, “Lattice Parameters of the CuAu(I) Phase,”Acta Chem. Scand., 21(10), 2900–2902 (1967). (Crys Structure; Experimental)

    Google Scholar 

  • 67Fra: M.C. Franzbian and R.B. Gordon, “The Order-Disorder Transformation in (Cu3Au) at High Pressure,”J. Appl. Phys., 38(1), 103–110 (1967). (Pressure; Experimental)

    ADS  Google Scholar 

  • 67Her: J. Hertz, Ph.D. Thesis, Univ. of Nancy, France (1967) as cited in [Hultgren, B]. (Thermo; Experimental)

  • 68Gan: M. Gantois, “Radiocrystallographic Study of Ordering Transformations of the Type Alpha-Disordered to Phase-1-Ordered in Ternary Gold-Copper-Nickel Alloys and the Binary Alloy AuCu3,”J. Appl. Crystallogr., 1(5), 263–271 (1968) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 68Mar: D.L. Martin, “Effect of Ordering on the Specific Heat of Cu3Au below 3 °K,”Can. J. Phys., 46(8), 923–927 (1968). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 68Oka: K. Okamura, H. Iwasaki, and S. Ogawa, “Lattice Modulation in the Long Period Ordered Alloys Studied by X-Ray Diffraction. II. Copper Gold II,”J. Phys. Soc. Jpn., 24(3), 569–579 (1968). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 69Man: S.L. Mannan and V.S. Arunachalam, “Low Temperature Ordering in CuAu,”Scr. Metall., 3(8), 597–600 (1969). (Crys Structure; Experimental)

    Google Scholar 

  • 69Nec: A. Neckel and S. Wagner, “Mass Spectrometric Determination of Thermodynamic Activities. I. Gold-Copper System,”Ber. Bunsenges. Phys. Chem., 73(2), 210–217 (1969) in German. (Thermo; Experimental)

    Google Scholar 

  • 69Poq: G.E. Poquette and D.E. Mikkola, “Antiphase Domain Growth in Cu3Au,”Trans. AIME, 245(4), 743–751 (1969). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 70Bea: J. Beauvillain, A. Lasserre, and F. Reynaud, “Superstructure Lines of an Ordered Cu3Au Alloy Observed with Nonparallel Illumination,”Compt. Rend. B, 271(18), 943–945 (1970) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 70Hag: J.P. Hager, S.M. Howard, and J.H. Jones, “Thermodynamic Properties of the Copper-Tin and Copper-Gold Systems by Mass Spectrometry,”Metall. Trans., 1, 415–422 (1970). (Thermo; Experimental)

    Google Scholar 

  • 70Haw: D.T. Hawkins, “The Effect of Ordering on Low-Temperature Heat Capacities: Ordered and Disordered Gold-Copper,” Diss., Univ. Calif. Berkeley, CA:Diss. Abstr. Int. B, 31(7), 4099–4100 (1971). (Thermo; Experimental)

    Google Scholar 

  • 70Mar: D.L. Martin and N. Waterhouse, “Specific Heat Below 3 °K of Copper-Gold Alloys,”Can. J. Phys., 48(10), 1217–1229 (1970). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 70Tro: J. Trondsen and P. Bolsaitis, “Activity of Copper in Solid Copper-Gold Alloys,”Metall. Trans., 1, 2022–2023 (1970). (Thermo; Experimental)

    Google Scholar 

  • 71Gra: D. Gratias and M. Condat, “Antiphase Domains in Ordered Au3Cu,”Compt. Rend. C, 273(4), 336–338 (1971) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 71Haw: D.T. Hawkins and R. Hultgren, “Effect of Ordering on Lattice Heat Capacities. Ordered and Disordered AuCu,”J. Chem. Thermodyn., 3(2), 175–186 (1971). (Thermo; Experimental)

    Google Scholar 

  • Indicates key paper71Ita: K. Itagaki and A. Yazawa, “Measurements of Heats of Mixing in Liquid Copper Binary Alloys,”J. Jpn. Inst. Met., 35(4), 383–389 (1971) in Japanese. (Thermo; Experimental)

    Google Scholar 

  • 71Lee: K. Van der Lee and A. Van den Beukel, “Simultaneous Measurements of Resistivity and Thermoelectric Power During Ordering of Au3Cu,”Scr. Metall., 5(10), 901–904 (1971). (Crys Structure; Experimental)

    Google Scholar 

  • 71Lut: H. Luthy, C. Isler, and P. Tissot, “DTA Study of the Order-Disorder Transformation in Gold-Rich Gold-Copper Alloys,”Helv. Chim. Acta, 54(7), 2194–2197 (1971) in French. (Equi Diagram; Experimental)

    Google Scholar 

  • 71Mih: K. Mihama, “Growth and Structure of AuCu3 Particles,”J. Phys. Soc. Jpn., 31(6), 1677–1682 (1971). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 71Pre: B. Predel and W. Schwermann, “AB 3 Superlattice Phases,”Z. Metallkd., 62(7), 517–524 (1971) in German. (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 71Sak: M. Sakai and D.E. Mikkola, “Growth of Antiphase Domains in Cu3Au as Studied by Transmission Electron Microscopy,”Metall. Trans., 2(6), 1635–1641 (1971). (Equi Diagram; Crys Structure; Experimental)

    Google Scholar 

  • 71Sha: R.L. Sharkey, M.J. Pool, and M. Hoch, “Thermodynamic Modeling of Binary and Ternary Metallic Solutions,”Metall. Trans., 2(11), 3039–3049 (1971). (Thermo; Theory)

    Google Scholar 

  • Indicates key paper72Ber: M. Bergman, L. Holmlund, and N. Ingri, “Structure and Properties of Dental Casting Au Alloys. Pt. 1. Determination of Ordered Structures in Solid Solutions of Au, Ag and Cu by Interpretation of Variations in the Unit Cell Length,”Acta Chem. Scand., 26(7), 2817–2831 (1972). (Crys Structure; Experimental)

    Google Scholar 

  • 72Del: W.G. Delinger, W.R. Savage, and J.W. Schweitzer, “Low-Temperature Specific Heat of α-Phase Copper-Gold Alloys,”Phys. Rev. B, 6(2), 338–341 (1972). (Thermo; Experimental)

    ADS  Google Scholar 

  • 72Gra: D. Gratias, M. Condat, and M. Fayard, “I- and II-Type Superlattices in Gold-Rich Copper-Gold Alloys,”Phys. Status Solidi (a), 14(1), 123–128 (1972). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 72Iwa: H. Iwasaki, “Pressure Dependence of the Long Range Period of the CuAu Alloy,”J. Phys. Soc. Jpn., 33(6), 1721 (1972). (Pressure; Experimental)

    ADS  Google Scholar 

  • 72Mat: V. Matyas and L. Karmazin, “Side Bands of Fundamental Reflexions of Cu-20 at.% Au and Cu-21 at.% Au Alloys,”J. Appl. Crystallogr., 5(4), 278–280 (1972). (Crys Structure; Experimental)

    Google Scholar 

  • 72Nog: S. Noguchi, K. Kondo, and U. Mizutani, “Low Temperature Specific Heat of a Long-Period Super Lattice CuAu II,”Toyoda Kenkyu Hokoku, 25, 56–59 (1972) in Japanese. (Thermo; Experimental)

    Google Scholar 

  • 72Sou: A. Soutter and J. Hertz, “Comparison of Empirical Relations Relating the Antiphase Period and Electron Concentration in Alloys withL 10 andL 12 Monoperiodic Antiphase Structures,”Compt. Rend. B, 274(12), 811–814 (1972) in French. (Crys Structure; Theory)

    Google Scholar 

  • 72Yoo: H.I. Yoon and R. Hultgren, “Effect of Ordering on Lattice Heat Capacities of Ordered and Disordered AuCu3,”J. Chem. Thermodyn., 4(3), 375–380 (1972). (Thermo; Experimental)

    Google Scholar 

  • 73Bar: R.D. Barnard and A.J.M. Chivers, “Study of Metallurgical Processes by Thermopower Measurements. Gold-Copper Alloys CuAu and Au3Cu,”Metal. Sci. J., 7, 147–152 (1973). (Equi Diagram; Experimental)

    Google Scholar 

  • 73Bel: B. Belbeoch and G. Jehanno, “X-Ray Diffraction Study of Gold-Copper Alloys with Compositions Intermediate Between That of Gold-Copper (AuCu3) and Gold-Copper (AuCu) (Gold Content between 35–37 at.%),”J. Appl. Crystallogr., 6(5), 371–380 (1973). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 73Gol: N.S. Golosov, L.E. Popov, and L.Ya. Pudan, “Theory of Order-Disorder Transformation in Binary System of the Copper-Gold Type,”J. Phys. Chem. Sol., 34(7), 1149–1163 (1973). (Equi Diagram; Theory)

    ADS  Google Scholar 

  • 73Ton: H.C. Tong and C.M. Wayman, “Order-Disorder Transformations in Cu−Au Thin Films,”Acta Metall., 21(10), 1381–1396 (1973). (Equi Diagram; Experimental)

    Google Scholar 

  • 74Goe: H. Goeminne, G. Van der Perre, T. Hens, and J. Van der Planken, “Formation and Growth of Copper-Gold (Cu3AuII) in a Deformed Matrix,”Acta Metall., 22(6), 725–731 (1974). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 74Iwa: H. Iwasaki, H. Yoshida, and S. Ogawa, “Effect of Pressure on the Ordered Structure and Phase Transition of the Cu−Au Alloy,”J. Phys. Soc. Jpn., 36(4), 1037–1042 (1974). (Pressure; Experimental)

    ADS  Google Scholar 

  • 74Mor: D.G. Morris, F.M.C. Besag, and R.E. Smallman, “Ordering and Disordering in Copper-Gold (Cu3Au),”Philos. Mag., 29(1), 43–57 (1974). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 74Per: G. Van der Perre, H. Goeminne, R. Geerts, and J. Van der Planken, “Nature and Growth of the Copper-Gold (Cu3AuII) Phase. X-Ray Diffraction Investigation,”Acta Metall., 22(2), 227–237 (1974). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 75Asa: K. Asaumi, “Order-Disorder Transition in a Copper-Gold (CuAu) Alloy at High Pressures,”Jpn. J. Appl. Phys., 14(3), 336–340 (1975). (Pressure; Experimental)

    ADS  Google Scholar 

  • 75Bha: A.B. Bhatia and N.H. March, “Short-Range Order and Phase Diagrams of Binary Alloys,”Phys. Lett. A, 51(7), 401–402 (1975). (Thermo; Theory)

    ADS  Google Scholar 

  • 75Bro: P.M. Bronsveld and S. Radelaar, “Domain Growth in Gold-Copper (Au3Cu),”J. Phys. Soc. Jpn., 38(5), 1336–1341 (1975). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 75Def: D. de Fontaine, “K-Space Symmetry Rules for Order-Disorder Reactions,”Acta Metall., 23(5), 553–571 (1975). (Crys Structure; Theory)

    Google Scholar 

  • 75Mor: D.G. Morris, “Disordering Study of Copper-Gold Alloys with Compositions Close to 25% Gold,”Phys. Status Solidi (a), 32(1), 145–156 (1975). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 75Ras: C.L. Rase and D.E. Mikkola, “Effect of Excess Au on Antiphase Domain Growth in Cu3Au,”Metall. Trans. A, 6(12), 2267–2271 (1975). (Equi Diagram, Crys Structure; Experimental; Indicates presence of a phase diagram)

    Google Scholar 

  • 75Sat: H. Sato, “Effect of Pressure on Ordered Structures and Phase Transitions in Cu−Au Alloys: Comments,”J. Phys. Soc. Jpn., 38(3), 739–741 (1975). (Pressure; Experimental)

    ADS  Google Scholar 

  • 75Sin: R. Sinclair and G. Thomas, “Antiphase Domains and Superlattice Spot Splitting in Copper-Gold (Cu3Au) I,”J. Appl. Crystallogr., 8(2), 206–210 (1975). (Equi Diagram; Crys Structure; Experimental)

    Google Scholar 

  • 75Wat: D. Watanabe and K. Takashima, “Periodic Antiphase Domain Structure in the Off-Stoichiometric Copper-Gold (CuAuII) Phase,”J. Appl. Crystallogr., 8(6), 598–602 (1975). (Crys Structure; Experimental)

    Google Scholar 

  • 75Yaz: A. Yazawa, K. Itagaki, and T. Azakami, “Physico-Chemical Properties of Liquid Copper Binary Alloys,”Trans. Jpn. Inst. Met., 16(9), 687–695 (1975). (Thermo; Experimental)

    Google Scholar 

  • 76Bar1: P. Bardhan and J.B. Cohen, “A Structural Study of the Alloy Cu3Au Above its Critical Temperature,”Acta Crystallogr. A, 32(4), 597–614 (1976). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 76Bar2: G. Bartsch and M. Weight, “X-Ray Diffraction Studies of Short Range Order in Copper-Gold (Cu3Au),”Z. Metallkd., 67(6), 422–430 (1976) in German. (Crys Structure; Experimental)

    Google Scholar 

  • 76Bha: A.B. Bhatia and N.H. March, “Phase Diagrams of Ascending and Minimum Type in Terms of Concentration Fluctuations in Binary Liquid and Solid Solutions,”Phys. Chem. Liq., 5(1), 45–60 (1976). (Thermo; Theory)

    Google Scholar 

  • 76Boy: M.L. Boyle, C.J. Van Tyne, and S.K. Tarby, “Computer Analysis and Synthesis of Solution Thermodynamics and Phase Diagrams. Computer Simulation for Materials Applications,”Nucl. Metal., 20(1), 187–194 (1976). (Thermo; Theory)

    Google Scholar 

  • 76Coo: H.E. Cook, “Continuous Transformations,”Mater. Sci. Eng., 25(1–2), 127–134 (1976). (Equi Diagram; Theory)

    Google Scholar 

  • 76Mar: D.L. Martin, “Specific Heat of Copper-Gold Alloys Below 30 K,”Phys. Rev. B, 14(2), 369–385 (1976). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 77Che: H. Chen, J.B. Cohen, and R. Ghosh, “Spinodal Ordering in 3∶1 Copper-Gold Alloy,”J. Phys. Chem. Solids, 38(8), 855–857 (1977). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 77Den: J.L. Deneuville, D. Gratias, C. Chatillon-Colinet, and J.C. Mathieu, “Measurement of Enthalpies of Formation of Ordered and Disordered Gold-Copper (Au3Cu) by Dissolution Calorimetry in Tin,”Compt. Rend. C, 284(19), 771–774 (1977) in French. (Thermo; Experimental)

    Google Scholar 

  • 77Kat: A.A. Katsnel'son, P.P. Safronov, V.G. Moiseenko, and V.M. Silonov, “Short-Range Order and Ordering Energy in Gold-Copper Alloys,”Fiz. Met. Metalloved., 43(1), 110–115 (1977) in Russian; TR:Phys. Met. Metallogr., 43(1), 94–99 (1977). (Crys Structure; Experimental)

    Google Scholar 

  • 77Mar: M.C. Marques, J.B. Sousa, M.F. Pinheiro, and M.E. Braga, “Electrical Resistivity and Phase Changes in CuAu,”Scr. Metall., 11(3), 197–200 (1977). (Equi Diagram; Experimental)

    Google Scholar 

  • 77Nov: M.I. Novgorodova, A.I. Tsepin, A.I. Gorshkov, I.M. Kudrevish, and L.N. Vyalsov, “New Data on the Crystal Chemistry and Properties of Natural Intermetallic Compounds of the Copper-Gold System,”Zap. Vsc. Mineral. O-va., 106(5), 540–552 (1977). (Crys Structure; Experimental)

    Google Scholar 

  • 78Den: J.L. Deneuville, G. Gratias, C. Chatillon-Colinet, and J.C. Mathieu, “Application of Differential Microcalorimetry to the Direct Measurement of Two Thermal Effects. Measurement of the Ordering Energy in the Compound Gold-Copper (Au3Cu),”J. Calorim. Anal. Therm. B, 9, (15), 111–121 (1978) in French. (Thermo; Experimental)

    Google Scholar 

  • 78Def: D. deFontaine and R. Kikuchi, “Fundamental Calculations of Coherent Phase Diagrams,” NBS Special Publication 496, 999–1026 (1978). (Equi Diagram, Crys Structure; Theory; Indicates presence of a phase diagram)

    Google Scholar 

  • 78Pea: W.B. Pearson, “Criteria for the Competing Stabilities of the Cesium Chloride and Gold-Copper (AuCu) Structures in Metallic Alloys,”Z. Kristallogr., 148(3–4), 281–294 (1978). (Crys Structure; Experimental)

    Google Scholar 

  • 78Tar: S.K. Tarby, C.J. Van Tyne, and M.L. Boyle, “Computerized Characterization of the Au−Cu−Ni Ternary System,”Applications of Phase Diagrams in Metallurgy and Ceramics, NBS Special Publication,496(2), 726–743 (1978). (Thermo; Theory)

  • 78Tis: P. Tissot and R. Dallenbach, “Study of Order-Disorder Transformation of Copper-Gold Alloys by Means of Differential Thermal Analysis,”Thermochim. Acta, 25(2), 143–153 (1978). (Equi Diagram; Thermo; Experimental)

    Google Scholar 

  • 79Agr: R.D. Agrawal, V.N.S. Mathur, and M.L. Kapoor, “Thermodynamics of Binary Copper-Bearing Substitutional Solutions,”Trans. Jpn. Inst. Met., 20(6), 323–328 (1979). (Thermo; Theory)

    Google Scholar 

  • 79Che: H. Chen and J.B. Cohen, “Measurements of the Ordering Instability in Binary Alloys,”Acta Metall., 27(4), 603–611 (1979). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 79Iwa: H. Iwasaki and Y. Watanabe, “Structure of Periodic Antiphase Domain Boundaries in Long-Range Ordered Alloys,” AIP Conf. Proc.,53, (Modulated Structure-1979), 247–249 (1979). (Crys Structure; Experimental)

  • 79Lan: F. Lantelme, S. Belaidouni, and M. Chemla, “Determination of Copper Activity in Gold-Copper Alloys by Measuring Electrochemical Potentials in Fused Medium,”J. Chem. Phys. Phys.-Chim. Biol., 76(5), 423–427 (1979) in French. (Thermo; Experimental)

    Google Scholar 

  • 80Koz: E.V. Kozlov and S.V. Strenchenko, “Order-Disorder Transformation in an Alloy Close in Composition to Au3Cu,”Izv. V.U.Z. Fiz., 23(3), 70–74 (1980) in Russian; TR:Sov. Phys. J., 23(3), 236–239 (1980). (Equi Diagram; Experimental)

    Google Scholar 

  • Indicates key paper80Wil: R.O. Williams, “Long-Period Superlattices in the Copper-Gold System as Two-Phase Mixtures,”Metall. Trans. A, 11(2), 247–253 (1980). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 81Che: H. Chen and J.B. Cohen, “Pretransition Phenomen in First-Order Order-Disorder Transitions,”Metall. Trans. A, 12(4), 575–579 (1981). (Crys Structure; Experimental)

    Google Scholar 

  • 81Kat: M. Kataoka and H. Iwasaki, “Displacement Waves in Long-Period Superlattice Alloys,”J. Phys. F, 11(8), 1545–1556 (1981). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 82Nay: P.K.K. Nayar, “High Temperature Thermodynamic Properties of Solid Copper-Gold Alloys,”Ann. Chim. (Paris), 7(5), 347–356 (1982). (Thermo; Experimental)

    Google Scholar 

  • Indicates key paper84Top: L. Topor and O.J. Kleppa, “Thermochemistry of Binary Liquid Gold Alloys,”Metall. Trans. A, 15, 203–208 (1984). (Thermo; Experimental)

    Google Scholar 

  • 86Kik: R. Kikuchi, “Phase Diagrams and APB, IPB Calculations of Cu−Ag−Au Systems,” inNoble Metal Alloys, T.B. Massalski, W.B. Pearson, L.H. Bennett, and Y.A. Chang, Ed., 63–84 (1986). (Equi Diagram; Theory; Indicates presence of a phase diagram.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work was supported by the International Gold Corporation, the International Copper Research Association, Inc., ASM INTERNATIONAL, and the Department of Energy through the Joint Program on Critical compilation of Physical and Chemical Data coordinated through the Office of Standard Reference Data, National Bureau of Standards. Literature searched through 1985. Part of the bibliographic search was provided by ASM. Professor Massalski is the ASM/NBS Data Program Editor-in-Chief for the Binary Alloy Program and is also Co-Category Editor for the binary gold alloys with Dr. Okamoto. Professor Laughlin is the Category Editor for binary copper alloys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, H., Chakrabarti, D.J., Laughlin, D.E. et al. The Au−Cu (Gold-Copper) system. JPE 8, 454–474 (1987). https://doi.org/10.1007/BF02893155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02893155

Keywords

Navigation