Skip to main content

Nanolead-Free Solder Pastes for Low Processing Temperature Interconnect Applications in Microelectronic Packaging

  • Chapter
  • First Online:
Nano-Bio- Electronic, Photonic and MEMS Packaging

Abstract

Lead-free solder, tin, tin/silver (SnAg), and tin/silver/copper (SnAgCu) alloy nanoparticles with various sizes were synthesized via a low-temperature chemical reduction method, and their thermal properties were studied by differential scanning calorimetry. The particle size dependency of the melting temperature and the latent heat of fusion were observed. The wetting test for the as-prepared SnAg and SnAgCu alloy nanoparticle pastes on a Cu surface showed the typical Cu6Sn5 intermetallic compound (IMC) formation. These low melting point SnAg or SnAgCu alloy nanoparticles could be used for low reflow temperature lead-free interconnect applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abtew, M., Selvaduray, G.: Lead-free solders in microelectronics. Mater. Sci. Eng. R. Rep. 27, 95 (2000)

    Article  Google Scholar 

  2. Wronski, C.R.M.: Size dependence of melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731 (1967)

    Article  CAS  Google Scholar 

  3. Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., Allen, L.H.: Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77(1), 99–102 (1996)

    Article  CAS  Google Scholar 

  4. Bachels, T., Guntherodt, H.J., Schafer, R.: Melting of isolated tin nanoparticles. Phys. Rev. Lett. 85(6), 1250–1253 (2000)

    Article  CAS  Google Scholar 

  5. Zhao, S.J., Wang, S.Q., Cheng, D.Y., Ye, H.Q.: Three distinctive melting mechanisms in isolated nanoparticles. J. Phys. Chem. B. 105(51), 2857–12860 (2001)

    Article  CAS  Google Scholar 

  6. Shvartsburg, A., Jarrold, M.F.: Solid clusters above the bulk melting point. Phys. Rev. Lett. 85, 2530 (2000)

    Article  CAS  Google Scholar 

  7. Cleveland, L., Luedtke, W.D., Landman, U.: Melting of gold clusters: icosahedral precursors. Phys. Rev. Lett. 81, 2036 (1998)

    Article  CAS  Google Scholar 

  8. Schmidt, M., Kusche, R., Issendroff, B., Haberland, H.: Irregular variations in the melting point of size-selected atomic clusters. Nature. 393(6682), 238–240 (1998)

    Article  CAS  Google Scholar 

  9. Lewis, L.J., Jensen, P., Barrat, J.L.: Melting, freezing, and coalescence of gold nanoclusters. Phys. Rev. B. 56, 2248 (1997)

    Article  CAS  Google Scholar 

  10. Cleveland, C.L., Landman, U., Luedtke, W.D.: Phase coexistence in clusters. J. Phys. Chem. 98, 6272 (1994)

    Article  CAS  Google Scholar 

  11. Shi, F.G.: Size-dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9, 1307 (1994)

    Article  CAS  Google Scholar 

  12. Jiang, Q., Shi, F.G.: Entropy for solid-liquid transition in nanocrystals. Mater. Lett. 37, 79 (1998)

    Article  CAS  Google Scholar 

  13. Allen, L., Bayles, R.A., Gile, W.W., Jesser, W.A.: Small particle melting of pure metals. Thin. Solid. Film. 144, 297 (1986)

    Article  CAS  Google Scholar 

  14. Buffat, P., Borel, J.P.: Size effect on melting temperature of gold particles. Phys. Rev. A. 13, 2287 (1976)

    Article  CAS  Google Scholar 

  15. Birringer, R., Gleiter, H., Klein, H.P., Marquart, P.: Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett. 102A, 365 (1984)

    Article  CAS  Google Scholar 

  16. Lee, B.I., Pope, E.J.A.: Chemical Processing of Ceramics. Marcel Dekker, New York (1994)

    Google Scholar 

  17. Raabe, O.G.: In: Liu, B.Y.H. (ed.) Fine Particles, p. 60. Academic, New York (1975)

    Google Scholar 

  18. J. P. Wilcoxon, A. Martino, R. L. Baughmann, E. Klavetter, A. P. Sylwester, “Synthesis of transition metal clusters and their catalytic and optical properties”, in “Nanophase and Nanocomposite Materials” S. Komarneni, J. C. Parker and G. J. Thomas, MRS, Pittsburgh, 1993: p. 131

    Google Scholar 

  19. Thomas, J.: Preparation and magnetic properties of colloidal cobalt particles. J. Appl. Phys. 37, 2914 (1966)

    Article  CAS  Google Scholar 

  20. Rochfort, G.L., Rieke, R.D.: Preparation, characterization, and chemistry of activated cobalt. Inorg. Chem. 25, 348 (1986)

    Article  CAS  Google Scholar 

  21. Koch, C.C.: Materials synthesis by mechanical alloying. Ann. Rev. Mater. Sci. 19, 121 (1989)

    Article  CAS  Google Scholar 

  22. Klabunde, K., Li, Y., Tan, B.: Solvated metal atom dispersed catalysts. Chem. Mater. 3, 30 (1991)

    Article  CAS  Google Scholar 

  23. Mafune, F., Kohno, J.Y., Takeda, Y., Kondow, T.: Dissociation and aggregation of gold nanoparticles under laser irradiation. J. Phys. Chem. B. 105, 9050 (2001)

    Article  CAS  Google Scholar 

  24. Zhao, Y.B., Zhang, Z.J., Dang, H.X.: Preparation of tin nanoparticles by solution dispersion. Mater. Sci. Eng. A359, 405 (2003)

    Article  CAS  Google Scholar 

  25. Zhao, Y.B., Zhang, Z.J., Dang, H.X.: Synthesis of In-Sn alloy nanoparticles by a solution dispersion method. J. Mater. Chem. 14, 299 (2004)

    Article  CAS  Google Scholar 

  26. Hsiao, L.Y., Duh, J.G.: Synthesis and characterization of lead-free solders with Sn-3.5Ag- xCu (x=0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method. J. Electrochem. Soc. 152(9), J105–J109 (2005)

    Article  CAS  Google Scholar 

  27. Kwon, Y., Kim, M.G., Kim, Y., Lee, Y., Cho, J.: Effect of capping agents in tin nanoparticles on electrochemical cycling. Electrochem. Solid-State Lett. 9, A34 (2006)

    Article  CAS  Google Scholar 

  28. Wang, Y., Lee, J.Y., Deivaraj, T.C.: Controlled synthesis of V-shaped SnO2 nanorods. J. Phys. Chem. B. 108, 13589 (2004)

    Article  CAS  Google Scholar 

  29. Imry, Y., Bergman, D.: Critical points and scaling laws for finite systems. Phys. Rev. A. 3(4), 1416 (1971)

    Article  Google Scholar 

  30. Mandal, M., Ghosh, S.K., Kundu, S., Esumi, K., Pal, T.: UV photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles. Langmuir. 18, 7792 (2002)

    Article  CAS  Google Scholar 

  31. Hanszen, K.J.: Theoretische untersuchungen uber den schmelzpunkt kleiner kugelchen – Ein beitrag zur thermod ynamik der grenzflachen. Z. Phys. 157, 523–553 (1960)

    Article  CAS  Google Scholar 

  32. Ercolessi, F., Andreoni, W., Tosatti, E.: Melting of small gold particles – mechanism and size effects. Phys. Rev. Lett. 66(7), 911–914 (1991)

    Article  CAS  Google Scholar 

  33. Lai, H.L., Duh, J.G.: Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying. J. Electron. Mater. 32(4), 215–220 (2003)

    Article  CAS  Google Scholar 

  34. Jiang, H.J., Moon, K., Dong, H., Hua, F., Wong, C.P.: Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492–496 (2006)

    Article  CAS  Google Scholar 

  35. Balan, L., Schneider, R., Billaud, D., Ghanbaja, J.: A new organometallic synthesis of size- controlled tin(0) nanoparticles. Nanotechnol. 16(8), 1153–1158 (2005)

    Article  CAS  Google Scholar 

  36. Banhart, F., Hernandez, E., Terrones, M.: Extreme superheating and supercooling of encapsulated metals in fullerenelike shells. Phys. Rev. Lett. 20(18), 185502 (2003)

    Article  CAS  Google Scholar 

  37. Christenson, H.K.: Confinement effects on freezing and melting. J. Phys. Condens. Matter. 13(11), R95–R133 (2001)

    Article  CAS  Google Scholar 

  38. Garrigos, R., Cheyssac, P., Kofman, R.: Melting of lead particles of small sizes – influence of surface phenomena. Z. Phys. D. 12, 497 (1989)

    Article  CAS  Google Scholar 

  39. Hu, W.Y., Xiao, S.G., Yang, J.Y., Zhang, Z.: Melting evolution and diffusion behavior of vanadium nanoparticles. Eur. Phys. J. B. 45(4), 547–554 (2005)

    Article  CAS  Google Scholar 

  40. Jiang, H., Moon, K., Hua, F., Wong, C.P.: Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low-melting point lead-free solders. Chem. Mater. 9(8), 4482–4485 (2007)

    Article  CAS  Google Scholar 

  41. Jiang, H., Moon, K., Sun, Y., Wong, C.P., Hua, F., Pal, T., Pal, A.: Tin/indium nanobundle formation from aggregation or growth of nanoparticles. J. Naonopart. Res. 10(1), 41–46 (2008)

    Article  CAS  Google Scholar 

  42. Jiang, H., Zhu, L., Moon, K., Wong, C.P.: The preparation of stable metal nanoparticles on carbon nanotubes whose surface were modified during production. Carbon. 45(3), 655–661 (2007)

    Article  CAS  Google Scholar 

  43. Jiang, H., Moon, K., Zhang, Z., Pothukuchi, S., Wong, C.P.: Variable frequency microwave synthesis of silver nanoparticles. J. Nanopart. Res. 8(1), 117–124 (2006)

    Article  CAS  Google Scholar 

  44. Jiang, H., Moon, K., Li, Y., Wong, C.P.: Surface functionalized silver nanoparticles for ultra- highly conductive polymer composites. Chem. Mater. 18(13), 2969–2973 (2006)

    Article  CAS  Google Scholar 

  45. Jiang, H., Moon, K., Lu, J., Wong, C.P.: Conductivity enhancement of nano Ag filled conductive adhesives by particle surface functionalization. J. Electron. Mater. 34(11), 1432–1439 (2005)

    Article  CAS  Google Scholar 

  46. Jiang, H., Moon, K., Wong, C.P.: Tin/silver/copper alloy nanoparticles for low temperature sol- der pastes interconnect. In: IEEE 58th Electronic Components & Technology Conference, May 27–30, 2008, pp. 1400–1404 (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Moon, Ks.(., Wong, C.P.(P. (2021). Nanolead-Free Solder Pastes for Low Processing Temperature Interconnect Applications in Microelectronic Packaging. In: Wong, C.PP., Moon, Ks.(., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Cham. https://doi.org/10.1007/978-3-030-49991-4_5

Download citation

Publish with us

Policies and ethics