Skip to main content
Log in

Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A mechanical alloying (MA) process was used to produce lead-free solder pastes of Sn-3.5Ag and the Sn-3.5Ag-4Bi system. Because of the high energy induced by repeated fracturing and welding, the grinding media played an important role during the MA process. A ceramic container was used to provide stronger impact force, which could induce phase transformation better than a Teflon container. In addition, it was found that 1-cm balls could fracture Bi particles and promote their dissolution into the Sn matrix. On the contrary, the milling process tended to achieve homogeneous mixing when using 3-mm balls. The MA powders, after milling with 3-mm balls, showed a small endothermic peak from the differential scanning calorimetry (DSC) profile at around 138°C, which was the eutectic temperature of Sn-Bi. The melting points of the MA powders in the ceramic container were measured to be 221°C and 203°C, respectively, for Sn-3.5Ag and Sn-3.5Ag-4Bi from the DSC curves. The reduced melting point ensured the complete melting during reflow with a peak temperature of 240°C. The formation of Ag3Sn was also observed from the x-ray diffraction peaks, indicating successful alloying by MA. The solder pastes could, thus, be produced by adding flux into the MA powders. The wetting property of the solder joint was also evaluated. The as-prepared solder pastes on electroless Ni-P/Cu/Si showed good metallurgical bonding with a contact angle less than 20°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R: Rep. 27, 95 (2000).

    Article  Google Scholar 

  2. H. Reichl, A. Schubert, and M. Töpper, Microelectron. Reliab. 40, 1243 (2000).

    Article  Google Scholar 

  3. S. Topani, S. Gopakumar, P. Borgesen, and K. Srihari, Annual Reliability Maintainability Symp. 423 (IEEE, 2002).

  4. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    CAS  Google Scholar 

  5. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    CAS  Google Scholar 

  6. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, and C.R. Kao, Chem. Mater. 13, 1051 (2001).

    Article  CAS  Google Scholar 

  7. S.K. Kang et al., 2001 Electronics Components Technol. Conf. (IEEE, 2001) pp. 448–454.

  8. S.K. Kang, H. Mavoori, S. Chada et al., J. Electron. Mater. 30, 1049 (2001).

    CAS  Google Scholar 

  9. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  10. P.T. Vianco, S.N. Burchett, M.K. Nielsen, J. Electron. Mater. 28, 1127 (1999).

    Article  CAS  Google Scholar 

  11. R.S. Rai, S.K. Kang, and S. Purushothaman, Electronic Components and Technology Conf., 45th Proc. (Piscataway, NJ: IEEE, 1995), p. 1197.

    Book  Google Scholar 

  12. L.L. Ye, Z. Lai, J. Liu, and A. Thölén, Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 2000), p. 134.

    Google Scholar 

  13. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A 31A, 1155 (2000).

    CAS  Google Scholar 

  14. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, and C.-Y. Li, J. Electron. Mater. 29, 1194 (2000).

    Article  CAS  Google Scholar 

  15. J.R. Oliver, J. Liu, and Z. Lai, Int. 2000 Symp. on Advanced Packaging Mater. 152 (2000).

  16. W.R. Lewis, Notes on Soldering (Uxbridge, U.K.: Tin Research Inst., 1961), p. 66.

    Google Scholar 

  17. J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei, JOM 45, 25 (1993).

    CAS  Google Scholar 

  18. Y.Y. Chen, J.G. Duh, and B.S. Chiou, J. Mater. Sci.: Mater. Electron. 11, 279 (2000).

    Article  CAS  Google Scholar 

  19. H.W. Miao and J.G. Duh, Mater. Chem. Phys. 71, 255 (2001).

    Article  CAS  Google Scholar 

  20. H.W. Miao, J.G. Duh, and B.S. Chiou, J. Mater. Sci.: Mater. Electron. 11, 609 (2000).

    Article  CAS  Google Scholar 

  21. Y.Y. Wei and J.G. Duh, J. Mater. Sci.: Mater. Electron. 9, 373 (1998).

    Article  CAS  Google Scholar 

  22. S.L. Chen (M.S. thesis, National Tsing Hua University, 1998).

  23. T.Y. Lee, W.J. Choi, and K.N. Tu, J. Mater. Res. 17, 291 (2002).

    CAS  Google Scholar 

  24. M. McCormack, S. Jin, G.W. Kammlott, and H.S. Chen, Appl. Phys. Lett. 63, 15 (1993).

    Article  CAS  Google Scholar 

  25. Z. Mei, F. Hua, and J. Glazer, Proc. Design and Reliability of Solders and Solder Interconnects (Warrendale, PA: TMS, 1997), p. 229.

    Google Scholar 

  26. Y. Kariya, Y. Hirata, and M. Otsuka, J. Electron. Mater. 28, 1263 (1999).

    Article  CAS  Google Scholar 

  27. K. Habu, N. Takeda, H. Watanabe, H. Ooki, J. Abe, T. Saito, Y. Taniguchi, and K. Takayama, Proc. 1999 IEEE Int. Symp. on Electronics and the Environment (Piscataway, NJ: IEEE, 1999), pp. 21–24.

    Book  Google Scholar 

  28. P.T. Vianco et al., U.S. patent 5,439,639 Aug. 8, (1995).

  29. K. Suganuma, 1st Int. Symp. on Environmentally Conscious and Design Inverse Manufacturing (Piscataway, NJ: IEEE, 1999), pp. 620–625.

    Google Scholar 

  30. C. Chen, C.E. Ho, A.H. Lin, G.L. Luo, and C.R. Kao, J. Electron. Mater. 29, 1200 (2000).

    Article  CAS  Google Scholar 

  31. J.S. Hwang, Modern Solder Technology for Competitive Electronics Manufacturing (New York: McGraw-Hill, 1996), pp. 209–223.

    Google Scholar 

  32. C. Suryanarayana, Process. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  33. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (New York: Van Nostrand Reinhold, 1980), pp. 66–68.

    Google Scholar 

  34. L. Lu, M.O. Lai, and S. Zhang, J. Mater. Process. Technol. 67, 100 (1997).

    Article  Google Scholar 

  35. M.L. Huang, C.M.L. Wu, and J.K.L. Lai, J. Mater. Sci.: Mater. Electron. 11, 57 (2000).

    Article  CAS  Google Scholar 

  36. J.S. Benjamin, Sci. Am. 234, 40 (1976).

    Article  CAS  Google Scholar 

  37. E.Y. Ivanov and T.F. Grigorieva, Solid State Ionics 101–103, 235 (1997).

    Google Scholar 

  38. V.M. López-Hirata and E.M. Arce-Estrada, Electron. Acta 42, 61 (1997).

    Article  Google Scholar 

  39. J. Eckert, Nanostr. Mater. 6, 413 (1995).

    Article  CAS  Google Scholar 

  40. D. Oleszak and H. Matyja, Nanostr. Mater. 6, 425 (1995).

    Article  CAS  Google Scholar 

  41. J.J. Jiang and M. Gasik, J. Power Sources 89, 117 (2000).

    Article  CAS  Google Scholar 

  42. N.H. Goo and K.S. Lee, Int. J. Hydrogen Energy 27, 433 (2002).

    Article  CAS  Google Scholar 

  43. L. Bolin, Met. Powder Rep. 53, 38 (1998).

    Article  Google Scholar 

  44. C.M.L. Wu, M.L. Huang, J.K.L. Lai, and Y.C. Chan, J. Electron. Mater. 29, 1015 (2000).

    Article  CAS  Google Scholar 

  45. M.L. Huang, C.M.L. Wu, J.K.L. Lai, and Y.C. Chan, J. Electron. Mater. 29, 1021 (2000).

    Article  CAS  Google Scholar 

  46. V.M. Lopez Hirata, M. Saucedo Munñoz, J.C. Rodriguez Hernandez, and Y.H. Zhu, Mater. Sci. Eng. A247, 8 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, H.L., Duh, J.G. Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying. J. Electron. Mater. 32, 215–220 (2003). https://doi.org/10.1007/s11664-003-0212-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0212-1

Key words

Navigation