Skip to main content
Log in

Variable Frequency Microwave Synthesis of Silver Nanoparticles

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis of silver nanoparticles based on a polyol process and variable frequency microwave (VFM) was investigated. Comparing to a thermal method, the reaction by VFM radiation was much faster. The effects of silver nitrate concentration, poly(N-vinylpyrrolidone) (PVP) concentration, reaction time and reaction temperature were studied. It was found that the higher concentration of silver nitrate, longer reaction time and higher temperature increased the particle size while the higher concentration of PVP decreased the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews M.P. and Ozin G.A. (1986). Liquid-phase agglomeration of silver atoms in olefinic and ether media: electrocatalytic application 2. J. Phys. Chem. 90(13): 2929–2938

    Article  CAS  Google Scholar 

  • Carotenuto G., Pepe G.P. and Nicolais L. (2000). Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur. Phys. J. B 16: 11–17

    Article  CAS  Google Scholar 

  • Caseri W. (2000). Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol. Rapid Commun. 21(11): 705–722

    Article  CAS  Google Scholar 

  • Chen Y.H. and Yeh C.S. (2001). A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem. Commun. 4: 371–372

    Article  Google Scholar 

  • Collier C.P., Saykally R.J., Shiang J.J., Henrichs S.E. and Heath J.R. (1997). Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277(5334): 1978–1981

    Article  CAS  Google Scholar 

  • Fang X.M. and Scola D.A. (1999). Investigation of microwave energy to cure carbon fiber reinforced phenylethynyl-terminated polyimide composites, PETI-5/IM7. J. Polym. Part A: Polym. Chem. 37(24): 4616–4628

    Article  CAS  Google Scholar 

  • Fuelong D.N., Launikonis A. and Sasse W.H.F. (1984). Colloidal platinum sols. preparation, characterization and stability towards salt. J. Chem. Soc., Faraday Trans. 1 80(3): 571–588

    Article  Google Scholar 

  • Galema S.A. (1997). Microwave chemistry. Chem. Soc. Rev. 26(3): 233–238

    Article  CAS  Google Scholar 

  • Gedye R.N., Rank W. and Estaway K.C. (1991). The rapid synthesis of organic-compounds in microwave-oven. 2.. Can. J. Chem. 69(4): 706–711

    Article  CAS  Google Scholar 

  • He S.T., Yao J.N., Jiang P., Shi D.X., Zhang H.X., Xie S.S., Pang S.J. and Gao H.J. (2001). Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 17(5): 1571–1575

    Article  CAS  Google Scholar 

  • Heard S.M., Grieser F., Barraclough C.G. and Sanders V.J. (1983). The characterization of Ag sols by electron microscopy, optical absorption, and electrophoresis. J. Colloid Interface Sci. 93(2): 545–555

    Article  CAS  Google Scholar 

  • Huang H.H., Ni X.P., Loy G.L., Chew C.H., Tan K.L., Loh F.C., Deng J.F. and Xu G.Q. (1996). Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12(4): 909–912

    Article  CAS  Google Scholar 

  • Itakura T., Torigoe K. and Esumi K. (1995). Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11(10): 4129–4134

    Article  CAS  Google Scholar 

  • Jana N.R., Sau T.K. and Pal T. (1999). Growing small silver particle as redox catalyst. J. Phys. Chem. B 103(1): 115–121

    Article  CAS  Google Scholar 

  • Kim J.Y., Kim M., Kim H.M., Joo J. and Choi J.H. (2003). Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 21(1–3): 147–151

    Article  CAS  Google Scholar 

  • Komarneni S., Li D.S., Newalkar B., Katsuki H. and Bhalla A.S. (2002). Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18(15): 5959–5962

    Article  CAS  Google Scholar 

  • Link S., Wang Z.L. and El-Sayed M.A. (1999). Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103(18): 3529–3533

    Article  CAS  Google Scholar 

  • Lisiecki I. and Pileni M.P. (1993). Synthesis of copper metallic clusters using reverse micelles as microreactors. J. Am. Chem. Soc. 115(10): 3887–3896

    Article  CAS  Google Scholar 

  • Mallin M.P. and Murphy C.J. (2002). Solution-phase synthesis of sub-10 nm Au–Ag alloy nanoparticles. Nano Lett. 2(11): 1235–1237

    Article  CAS  Google Scholar 

  • Mandal M., Ghosh S.K., Kundu S., Esumi K. and Pal T. (2002). UV photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles. Langmuir 18(21): 7792–7797

    Article  CAS  Google Scholar 

  • McConnell W.P., Novak J.P., Fuierer R.R., Tenent R.C. and Feldheim D.L. (2000). Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays. J. Phys. Chem. B 104(38): 8925–8930

    Article  CAS  Google Scholar 

  • Moon K., Li Y., Xu J.W. and Wong C.P. (2004). Lead-free solder interconnect by variable frequency microwave (VFM). IEEE Proceeding of the 54th Electronics Packaging Technology Conference 54(2): 1989–1995

    Google Scholar 

  • Pal T., Maity D.S. and Ganguly A. (1986). Use of a silver–gelatin complex for the determination of micro-amounts of hydrazine in water. Analyst 111(12): 1413–1415

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I. and Liz-Marzan L.M. (2002). Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18(7): 2888–2894

    Article  CAS  Google Scholar 

  • Petit C., Lixon P. and Pileni M.P. (1993). In situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem. 97(49): 12974–12983

    Article  CAS  Google Scholar 

  • Pothukuchi S., Li Y. and Wong C.P. (2004). Development of a novel polymer-metal nanocomposite obtained through the route of in situ reduction for integral capacitor application. J. App. Polym. Sci. 93(4): 1531–1538

    Article  CAS  Google Scholar 

  • Sun Y.G., Mayers B., Herricks T. and Xia Y.N. (2003). Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3(7): 955–960

    Article  CAS  Google Scholar 

  • Sun Y.G. and Xia Y.N. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601): 2176–2179

    Article  CAS  Google Scholar 

  • Taleb A., Silly F., Gusev A.O., Charra F. and Pileni M.P. (2000). Electron transport properties of nanocrystals: isolated, and “supra”-crystalline phases. Adv. Mater. 12(9): 633–637

    Article  CAS  Google Scholar 

  • Treguer M.C., de Cointet , Remita H., Khatouri J., Mostafavi M., Amblard J. and Belloni J. (1998). Dose rate effects on radiolytic synthesis of gold–silver bimetallic clusters in solution. J. Phys. Chem. B 102(22): 4310–4321

    Article  CAS  Google Scholar 

  • Yamamoto T., Wada Y., Sakata T., Mori H., Goto M., Hibino S. and Yanagida S. (2004). Microwave-assisted preparation of silver nanoparticles. Chem. Lett. 33(2): 158–159

    Article  CAS  Google Scholar 

  • Yu W.Y., Tu W.X. and Liu H.F. (1999). Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15(1): 6–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Moon, Ks., Zhang, Z. et al. Variable Frequency Microwave Synthesis of Silver Nanoparticles. J Nanopart Res 8, 117–124 (2006). https://doi.org/10.1007/s11051-005-7522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-7522-6

Keywords

Navigation