Skip to main content

NLR Function in Fungi as Revealed by the Study of Self/Non-self Recognition Systems

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Plants and animals rely on cytoplasmic immune receptors of the NLR family to cope with a variety of biotic challenges. Proteins homologous to plant and animal NLRs were identified in fungi as part of the study of a non-self recognition and programmed cell death process known as heterokaryon incompatibility. We review the role of characterized NLR-type proteins in incompatibility in the three fungal species Podospora anserina, Cryphonectria parasitica, and Neurospora crassa and describe the phylogenetic distribution, domain architecture, and variability of the NLR gene repertoires in fungal genomes. We describe a specific type of NLR-mediated signal transduction process based on amyloid templating. We review the direct and indirect evidence suggesting that in general terms NLR-like proteins might also function as immune receptors in the fungal branch as they do in plant and animal lineages and discuss these implications in terms of the evolutionary trajectory of NLR genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanen DK, Debets AJM, Glass NL, Saupe SJ (2010) Biology and genetics of vegetative incompatibility in fungi. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. Washington, DC, ASM Press, pp 274–288

    Google Scholar 

  • Aravind L, Koonin EV (2002) Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46:355–367

    Article  CAS  PubMed  Google Scholar 

  • Bastiaans E, Debets AJ, Aanen DK, van Diepeningen AD, Saupe SJ, Paoletti M (2014) Natural variation of heterokaryon incompatibility gene het-c in Podospora anserina reveals diversifying selection. Mol Biol Evol 31:962–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8:382–393

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5:e236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jorgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, Chen ZJ (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayley DM (1923) The phenonenon of mutual aversion between mono-spore mycelia of the same fungus (Diaporthe perniciosa march.) with a discussion on sex heterothallism in fungi. Jour Gen 13:353–370

    Article  Google Scholar 

  • Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martin-Pizarro C, Laitinen RA, Rowan BA, Tenenboim H et al (2014) Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:1341–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevanne D, Bastiaans E, Debets A, Saupe SJ, Clave C, Paoletti M (2009) Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family. Curr Genet 55:93–102

    Article  CAS  PubMed  Google Scholar 

  • Chevanne D, Saupe SJ, Clave C, Paoletti M (2010) WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family. BMC Evol Biol 10:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG, Nuss DL (2012) Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics 190:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daskalov A, Saupe SJ (2015) As a toxin dies a prion comes to life: a tentative natural history of the [Het-s] prion. Prion 9:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daskalov A, Paoletti M, Ness F, Saupe SJ (2012) Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS One 7:e34854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daskalov A, Dyrka W, Saupe SJ (2015a) Theme and variations: evolutionary diversification of the HET-s functional amyloid motif. Sci Rep 5:12494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daskalov A, Habenstein B, Martinez D, Debets AJ, Sabate R, Loquet A, Saupe SJ (2015b) Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 13:e1002059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daskalov A, Habenstein B, Sabate R, Berbon M, Martinez D, Chaignepain S, Coulary-Salin B, Hofmann K, Loquet A, Saupe SJ (2016) Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proc Natl Acad Sci U S A 113:2720–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daskalov A, Heller J, Herzog S, Fleissner A, Glass NL (2017) Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. Microbiol Spectr 5(2). https://doi.org/10.1128/microbiolspec.FUNK-0015-2016

  • Dunin-Horkawicz S, Kopec KO, Lupas AN (2014) Prokaryotic ancestry of eukaryotic protein networks mediating innate immunity and apoptosis. J Mol Biol 426:1568–1582

    Article  CAS  PubMed  Google Scholar 

  • Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, Sarris PF (2016) Pathogen perception by NLRs in plants and animals: parallel worlds. BioEssays 38:769–781

    Article  PubMed  Google Scholar 

  • Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A, Paoletti M, Sherman DJ, Saupe SJ (2014) Diversity and variability of NOD-like receptors in fungi. Genome Biol Evol 6:3137–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espagne E, Balhadere P, Penin ML, Barreau C, Turcq B (2002) HET-E and HET-D belong to a new subfamily of WD40 proteins involved in vegetative incompatibility specificity in the fungus Podospora anserina. Genetics 161:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esser K (1965) Heterogenic incompatibility. In: Esser K, Raper JR (eds) Incompatibility in fungi. Springer, New York, pp 6–12

    Chapter  Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4:e1000046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han GZ (2018) Out of water: the origin and early diversification of plant R-genes. Plant Physiol 177:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnjobst L, Wilson JF (1956) Heterocaryosis and protoplasmic incompatibility in Neurospora crassa. Proc Natl Acad Sci U S A 42:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass NL, Vollmer SJ, Staben C, Grotelueschen J, Metzenberg RL, Yanofsky C (1988) DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 241:570–573

    Article  CAS  PubMed  Google Scholar 

  • Gould JS, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  • Graziani S, Silar P, Daboussi MJ (2004) Bistability and hysteresis of the ‘Secteur’ differentiation are controlled by a two-gene locus in Nectria haematococca. BMC Biol 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamada M, Shoguchi E, Shinzato C, Kawashima T, Miller DJ, Satoh N (2013) The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Mol Biol Evol 30:167–176

    Article  CAS  PubMed  Google Scholar 

  • Heller J, Clave C, Gladieux P, Saupe SJ, Glass NL (2018) NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. Proc Natl Acad Sci U S A 115:E2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XJ, Li T, Wang Y, Xiong Y, Wu XH, Zhang DL, Ye ZQ, Wu YD (2017) Prokaryotic and highly-repetitive WD40 proteins: a systematic study. Sci Rep 7:10585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inohara N, Ogura Y, Chen FF, Muto A, Nunez G (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276:2551–2554

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, Zambonelli A (2012) Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biol 116:261–275

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Aravind L (2000) The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci 25:223–224

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    Article  CAS  PubMed  Google Scholar 

  • Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A et al (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski S, Rosenstiel P (2013) Debug your bugs – how NLRs shape intestinal host-microbe interactions. Front Immunol 4:479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loquet A, Saupe SJ (2017) Diversity of amyloid motifs in NLR signaling in Fungi. Biomol Ther 7(2):E38

    Google Scholar 

  • Marold JD, Kavran JM, Bowman GD, Barrick D (2015) A naturally occurring repeat protein with high internal sequence identity defines a new class of TPR-like proteins. Structure 23:2055–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB et al (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217:1213–1229

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Yashiro T, Shimizu K, Tatsumi S, Tamura T (2009) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme beta-glucosidase. Curr Biol 19:30–36

    Article  CAS  PubMed  Google Scholar 

  • Meunier E, Broz P (2017) Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38:744–757

    Article  CAS  PubMed  Google Scholar 

  • Mompean M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, Wu H, McDermott AE (2018) The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173(1244–1253):e1210

    Google Scholar 

  • Newman AM, Cooper JB (2007) XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinform 8:382

    Article  CAS  Google Scholar 

  • Nimma S, Ve T, Williams SJ, Kobe B (2017) Towards the structure of the TIR-domain signalosome. Curr Opin Struct Biol 43:122–130

    Article  CAS  PubMed  Google Scholar 

  • Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P, Hofius D, Petersen M, Mundy J (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog 6(10):e1001137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paoletti M (2016) Vegetative incompatibility in fungi: from recognition to cell death, whatever does the trick. Fungal Biol Rev 30:152–162

    Article  Google Scholar 

  • Paoletti M, Saupe SJ (2009) Fungal incompatibility: evolutionary origin in pathogen defense? BioEssays 31:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Paoletti M, Saupe SJ, Clave C (2007) Genesis of a fungal non-self recognition repertoire. PLoS One 2:e283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter M, Kohler A, Ohm RA, Kuo A, Krutzmann J, Morin E, Arend M, Barry KW, Binder M, Choi C et al (2016) Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat Commun 7:12662

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinan-Lucarre B, Paoletti M, Clave C (2007) Cell death by incompatibility in the fungus Podospora. Semin Cancer Biol 17:101–111

    Article  CAS  PubMed  Google Scholar 

  • Riek R, Eisenberg DS (2016) The activities of amyloids from a structural perspective. Nature 539:227–235

    Article  PubMed  Google Scholar 

  • Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe S, Turcq B, Begueret J (1995a) A gene responsible for vegetative incompatibility in the fungus Podospora anserina encodes a protein with a GTP-binding motif and G beta homologous domain. Gene 162:135–139

    Article  CAS  PubMed  Google Scholar 

  • Saupe S, Turcq B, Begueret J (1995b) Sequence diversity and unusual variability at the het-c locus involved in vegetative incompatibility in the fungus Podospora anserina. Curr Genet 27:466–471

    Article  CAS  PubMed  Google Scholar 

  • Sellge G, Kufer TA (2015) PRR-signaling pathways: learning from microbial tactics. Semin Immunol 27:75–84

    Article  CAS  PubMed  Google Scholar 

  • Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10:e1001451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ML, Micali OC, Hubbard SP, Mir-Rashed N, Jacobson DJ, Glass NL (2000) Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. Genetics 155:1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE (2014) Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran DTN, Chung EH, Habring-Muller A, Demar M, Schwab R, Dangl JL, Weigel D, Chae E (2017) Activation of a plant NLR complex through Heteromeric association with an autoimmune risk variant of another NLR. Curr Biol 27:1148–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehling J, Deveau A, Paoletti M (2017) Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLoS Pathog 13:e1006578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urbach JM, Ausubel FM (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci U S A 114:1063–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B (2017) The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol Immunol 86:23–37

    Article  CAS  PubMed  Google Scholar 

  • Van der Nest MA, Olson A, Lind M, Velez H, Dalman K, Durling MB, Karlsson M, Stenlid J (2014) Distribution and evolution of het gene homologs in the basidiomycota. Fungal Genet Biol 64:45–57

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Liu B, Zhang XY, Zhou QM, Zhang T, Li H, Yu YF, Zhang XL, Hao XY, Wang M et al (2014) Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 15:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Yuen B, Bayes JM, Degnan SM (2014) The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 31:106–120

    Article  CAS  PubMed  Google Scholar 

  • Zambounis A, Elias M, Sterck L, Maumus F, Gachon CM (2012) Highly dynamic exon shuffling in candidate pathogen receptors … what if brown algae were capable of adaptive immunity? Mol Biol Evol 29:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Zhang DX, Spiering MJ, Dawe AL, Nuss DL (2014) Vegetative incompatibility loci with dedicated roles in allorecognition restrict Mycovirus transmission in chestnut blight fungus. Genetics 197:701–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Dodds PN, Bernoux M (2017) What do we know about NOD-like receptors in plant immunity? Annu Rev Phytopathol 55:205–229

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C, Perraudeau F, Glass NL (2015) Identification of allorecognition loci in Neurospora crassa by genomics and evolutionary approaches. Mol Biol Evol 32:2417–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430:2237–2243

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Corinne Clavé for critical reading of the manuscript. This work was supported in part by the National Science Centre of Poland (grant no. 2015/17/D/ST6/04054) and an ANR grant (SFAS, ANR-17-CE11-0035-01). AD was supported by a Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the US Department of Energy Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven J. Saupe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daskalov, A., Dyrka, W., Saupe, S.J. (2020). NLR Function in Fungi as Revealed by the Study of Self/Non-self Recognition Systems. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_6

Download citation

Publish with us

Policies and ethics