Skip to main content

Biochar; a Remedy for Climate Change

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

Researchers and scientists have agreed upon a commitment to lower greenhouse gases (GHG) emission values by 40–70% compared to 2010 values and to keep the temperature rise at 1.5 °C by mid-century. Several proposed solutions have been put forward by scientific community to fulfill this commitment. Biochar is an emerging solution to problems relating soil and environmental degradation due post green revolution measures taken by humanity to boost agricultural production. Being rich in carbon and having greater stability, biochar has several benefiting properties such as surface area, porosity, water holding capacity, adsorption capacity, and cation exchange capacity that may persist for decades or even centuries. These properties greatly help in sustainably maintaining soil and environmental health and increasing crop production. Besides, biochar has been proven to have great carbon sequestration capacity. Biochar in its original form and after physical or chemical activation has been found to be an excellent CO2 adsorbent with stable recyclability and regeneration. It also increases soil aeration, hence decreasing the activities of methanogens and consequently reducing methane emissions. Biochar increases the C:N ratio of the soil which according to several researchers may help reduce nitrous oxide emissions from the soil. Biochar has also been proven an effective sorbent for organic and inorganic wastes including heavy metals and pesticides. This sorbent capacity of biochar comes from its greater surface area and microporosity which can be further increased by techniques employed during pyrolysis. In its climate change mitigation efforts, biochar is a suitable alternative to fossil fuel driven energy production. Biochar has been used in the production of clean energy sources such as for sorption of hydrogen, development of super capacitors, as solid acid catalyst for biodiesel production and as cathodes in fuel cell systems such as Direct Carbon Fuel Cell (DCFC) and Microbial Fuel Cell (MFC). This chapter provides with ample examples from previous and ongoing studies that makes biochar a potential candidate among solutions being put forward by scientific community to mitigate the adverse effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adnan M, Zahir S, Fahad S, Arif M, Mukhtar A, Imtiaz AK, Ishaq AM, Abdul B, Hidayat U, Muhammad A, Inayat-Ur R, Saud S, Muhammad ZI, Yousaf J, Amanullah Hafiz MH, Wajid N (2018) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 8:4339. https://doi.org/10.1038/s41598-018-22653-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad M et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  • Ahn SY, Eom SY, Rhie YH, Sung YM, Moon CE, Choi GM, Kim DJ (2013) Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl Energy 105:207–216

    Article  Google Scholar 

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S, Hasnain A, Maqbool MM, Rehmani MIA, Rasool A, Masood N, Mahmood F, Mubeen M, Sultana SR, Fahad S, Amanet K, Saleem M, Abbas Y, Akhtar HM, Waseem F, Murtaza R, Amin A, Zahoor SA, ul Din MS, Nasim W (2018a) Fate of organic and inorganic pollutants in paddy soils. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils, Soil biology. Springer, Cham, pp 197–214

    Chapter  Google Scholar 

  • Akram R, Turan V, Wahid A, Ijaz M, Shahid MA, Kaleem S, Hafeez A, Maqbool MM, Chaudhary HJ, Munis MFH, Mubeen M, Sadiq N, Murtaza R, Kazmi DH, Ali S, Khan N, Sultana SR, Fahad S, Amin A, Nasim W (2018b) Paddy land pollutants and their role in climate change. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils, Soil biology. Springer, Cham, pp 113–124

    Chapter  Google Scholar 

  • Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recy 118:13–26

    Article  Google Scholar 

  • Ayodele A, Oguntunde P, Joseph A, Junior D, de Souza M (2009) Numerical analysis of the impact of charcoal production on soil hydrological behavior, runoff response and erosion susceptibility. Rev Bras Ciênc Solo 33:137–146

    Article  Google Scholar 

  • Aziz K, Daniel KYT, Fazal M, Muhammad ZA, Farooq S, Fan W, Fahad S, Ruiyang Z (2017) Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ Sci Pollut Res 24:23471–23487. https://doi.org/10.1007/s11356-017-0131-y

    Article  CAS  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Org Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Borchard N et al (2018) Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Total Environ

    Google Scholar 

  • Bruun E, Müller-Stöver D, Ambus P, Hauggaard-Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62:581–589

    Article  CAS  Google Scholar 

  • Cayuela M, Van Zwieten L, Singh B, Jeffery S, Roig A, Sánchez-Monedero M (2014) Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082

    Article  CAS  Google Scholar 

  • Dehkhoda AM, Ellis N (2013) Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catal Today 207:86–92

    Article  CAS  Google Scholar 

  • Ello AS, de Souza LK, Trokourey A, Jaroniec M (2013) Development of microporous carbons for CO2 capture by KOH activation of African palm shells. J CO2 Util 2:35–38

    Article  CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agric Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    CAS  PubMed  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan SA Jr, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby HNW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Muhammad ZI, Abdul K, Ihsanullah D, Saud S, Saleh A, Wajid N, Muhammad A, Imtiaz AK, Chao W, Depeng W, Jianliang H (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1443213

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Rahman MHU (2019a) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Cambridge, pp 299–312

    Google Scholar 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019b) Rice responses and tolerance to high temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Cambridge, pp 201–224

    Google Scholar 

  • Figueroa-Torres M, Domínguez-Ríos C, Cabañas-Moreno J, Vega-Becerra O, Aguilar-Elguézabal A (2012) The synthesis of Ni-activated carbon nanocomposites via electroless deposition without a surface pretreatment as potential hydrogen storage materials. Int J Hydrog Energy 37:10743–10749

    Article  CAS  Google Scholar 

  • Gollakota A, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392

    Article  Google Scholar 

  • Goodman PA, Li H, Gao Y, Lu Y, Stenger-Smith J, Redepenning J (2013) Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes. Carbon 55:291–298

    Article  CAS  Google Scholar 

  • Gupta S, Kua HW, Low CY (2018) Use of biochar as carbon sequestering additive in cement mortar. Cement Concrete Comp 87:110–129

    Article  CAS  Google Scholar 

  • Habib ur R, Ashfaq A, Aftab W, Manzoor H, Fahd R, Wajid I, Md. Aminul I, Vakhtang S, Muhammad A, Asmat U, Abdul W, Syeda RS, Shah S, Shahbaz K, Fahad S, Manzoor H, Saddam H, Wajid N (2017) Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crops Res. https://doi.org/10.1016/j.fcr.2017.07.007

  • Hafiz MH, Wajid F, Farhat A, Fahad S, Shafqat S, Wajid N, Hafiz FB (2016) Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ Sci Pollut Res 24(3):2549–2557. https://doi.org/10.1007/s11356-016-8031-0

    Article  CAS  Google Scholar 

  • Hafiz MH, Muhammad A, Farhat A, Hafiz FB, Saeed AQ, Muhammad M, Fahad S, Muhammad A (2019) Environmental factors affecting the frequency of road traffic accidents: a case study of sub-urban area of Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04752-8

  • Hajaligol M, Waymack B, Kellogg D (2001) Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials. Fuel 80:1799–1807

    Article  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralization. Org Geochem 35:823–830

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457

    Article  CAS  PubMed  Google Scholar 

  • Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119

    Article  CAS  PubMed  Google Scholar 

  • Jablonowski ND, Borchard N, Zajkoska P, Fernández-Bayo JD, Martinazzo R, Berns AE, Burauel P (2013) Biochar-mediated [14C] atrazine mineralization in atrazine-adapted soils from Belgium and Brazil. J Agric Food Chem 61:512–516

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Li B, Chen Z, Xie Z, Xiong Z (2012) Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Sci Plant Nutr 58:503–509

    Article  CAS  Google Scholar 

  • Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489

    Article  CAS  Google Scholar 

  • Jones D, Edwards-Jones G, Murphy D (2011) Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43:804–813

    Article  CAS  Google Scholar 

  • Kacprzak A, Kobyłecki R, Włodarczyk R, Bis Z (2014) The effect of fuel type on the performance of a direct carbon fuel cell with molten alkaline electrolyte. J Power Sources 255:179–186

    Article  CAS  Google Scholar 

  • Kamran M, Wenwen C, Irshad A, Xiangping M, Xudong Z, Wennan S, Junzhi C, Shakeel A, Fahad S, Qingfang H, Tiening L (2017) Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul 84:317–332. https://doi.org/10.1007/s10725-017-0342-8

    Article  CAS  Google Scholar 

  • Khorram MS, Zheng Y, Lin D, Zhang Q, Fang H, Yu Y (2016) Dissipation of fomesafen in biochar-amended soil and its availability to corn (Zea mays L.) and earthworm (Eisenia fetida). J Soils Sediments 16:2439–2448

    Article  CAS  Google Scholar 

  • Knoblauch C, Marifaat A-A, Haefele M (2008) Biochar in rice-based system: impact on carbon mineralization and trace gas emissions. Bioresour Technol 95:255–257

    Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Google Scholar 

  • Lee SM et al (2000) Hydrogen adsorption and storage in carbon nanotubes. Synth Met 113:209–216

    Article  CAS  Google Scholar 

  • Lehmann J (2009) Biological carbon sequestration must and can be a win-win approach. Clim Chang 97:459–463

    Article  CAS  Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in soil. In: Biochar for environmental management: science and technology. Earthscan, London, pp 183–206

    Google Scholar 

  • Li K, An X, Park KH, Khraisheh M, Tang J (2014a) A critical review of CO2 photoconversion: catalysts and reactors. Catal Today 224:3–12

    Article  CAS  Google Scholar 

  • Li M, Zheng Y, Chen Y, Zhu X (2014b) Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol 154:345–348

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Gascó G, Fu S, Méndez A, Paz-Ferreiro J (2016) Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil Tillage Res 164:3–10

    Article  Google Scholar 

  • Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939

    Article  CAS  Google Scholar 

  • Liu M-C, Kong L-B, Zhang P, Luo Y-C, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448

    Article  CAS  Google Scholar 

  • Meyer S, Bright RM, Fischer D, Schulz H, Glaser B (2012) Albedo impact on the suitability of biochar systems to mitigate global warming. Environ Sci Technol 46:12726–12734

    Article  CAS  PubMed  Google Scholar 

  • Muhammad Z, Abdul MK, Abdul MS, Kenneth BM, Muhammad S, Shahen S, Ibadullah J, Fahad S (2019) Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04838-3

  • Nag SK, Kookana R, Smith L, Krull E, Macdonald LM, Gill G (2011) Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 84:1572–1577

    Article  CAS  PubMed  Google Scholar 

  • Noble I, Bolin B, Ravindranath N, Verardo D, Dokken D (2000) Land use, land use change, and forestry. Cambridge University Press

    Google Scholar 

  • Nowrouzi M, Younesi H, Bahramifar N (2018) Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel 223:99–114

    Article  CAS  Google Scholar 

  • Persson H, Han T, Sandström L, Xia W, Evangelopoulos P, Yang W (2018) Fractionation of liquid products from pyrolysis of lignocellulosic biomass by stepwise thermal treatment. Energy 154:346–351

    Article  CAS  Google Scholar 

  • Pessenda LC, Boulet R, Aravena R, Rosolen V, Gouveia S, Ribeiro A, Lamotte M (2001) Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. The Holocene 11:250–254

    Article  Google Scholar 

  • Polifka S, Wiedner K, Glaser B (2018) Increased CO 2 fluxes from a sandy Cambisol under agricultural use in the Wendland region, Northern Germany, three years after biochar substrates application. GCB Bioenergy 10:432–443

    Article  CAS  Google Scholar 

  • Qamar-uz Z, Zubair A, Muhammad Y, Muhammad ZI, Abdul K, Fahad S, Safder B, Ramzani PMA, Muhammad N (2017) Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Arch Agron Soil Sci 64:147–161. https://doi.org/10.1080/03650340.2017.1338343

    Article  CAS  Google Scholar 

  • Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064

    Article  CAS  Google Scholar 

  • Qiu Y, Pang H, Zhou Z, Zhang P, Feng Y, Sheng GD (2009) Competitive biodegradation of dichlobenil and atrazine coexisting in soil amended with a char and citrate. Environ Pollut 157:2964–2969

    Article  CAS  PubMed  Google Scholar 

  • Rashidi NA, Yusup S (2016) An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J CO2 Util 13:1–16

    Article  CAS  Google Scholar 

  • Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822

    Article  CAS  Google Scholar 

  • Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Renner R (2007) Rethinking biochar. ACS Publications

    Google Scholar 

  • Rondon M, Ramirez J, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration in Agriculture and Forestry, USDA, Baltimore, pp 21–24

    Google Scholar 

  • Sagrilo E, Jeffery S, Hoffland E, Kuyper TW (2015) Emission of CO2 from biochar-amended soils and implications for soil organic carbon. GCB Bioenergy 7:1294–1304

    Article  CAS  Google Scholar 

  • Sajjad H, Muhammad M, Ashfaq A, Waseem A, Hafiz MH, Mazhar A, Nasir M, Asad A, Hafiz UF, Syeda RS, Fahad S, Depeng W, Wajid N (2019) Using GIS tools to detect the land use/land cover changes during forty years in Lodhran district of Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06072-3

  • Saud S, Chen Y, Long B, Fahad S, Sadiq A (2013) The different impact on the growth of cool season turf grass under the various conditions on salinity and draught stress. Int J Agric Sci Res 3:77–84

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morph physiological functions. SciWorld J 2014:1–10. https://doi.org/10.1155/2014/368694

    Article  CAS  Google Scholar 

  • Saud S, Chen Y, Fahad S, Hussain S, Na L, Xin L, Alhussien SA (2016) Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res 23(17):17647–17655. https://doi.org/10.1007/s11356-016-6957-x

    Article  CAS  Google Scholar 

  • Saud S, Fahad S, Yajun C, Ihsan MZ, Hammad HM, Nasim W, Amanullah Jr, Arif M, Alharby H (2017) Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. Front Plant Sci 8:983. https://doi.org/10.3389/fpls.2017.00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayigh A (2012) Comprehensive renewable energy. Elsevier Science & Technology, Oxford

    Google Scholar 

  • Shafie ST, Salleh MM, Hang LL, Rahman M, Ghani W (2012) Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J Pur Util React Environ 1:293–307

    CAS  Google Scholar 

  • Shah F, Lixiao N, Kehui C, Tariq S, Wei W, Chang C, Liyang Z, Farhan A, Fahad S, Huang J (2013) Rice grain yield and component responses to near 2°C of warming. Field Crop Res 157:98–110

    Article  Google Scholar 

  • Shinogi Y (2004) Nutrient leaching from carbon products of sludge. In: 2004 ASAE annual meeting. American Society of Agricultural and Biological Engineers, St. Joseph, p 1

    Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Sonoki T, Furukawa T, Jindo K, Suto K, Aoyama M, Sánchez-Monedero MÁ (2013) Influence of biochar addition on methane metabolism during thermophilic phase of composting. J Basic Microbiol 53:617–621

    Article  PubMed  Google Scholar 

  • Sopeña F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88:77–83

    Article  PubMed  CAS  Google Scholar 

  • Spigarelli BP, Kawatra SK (2013) Opportunities and challenges in carbon dioxide capture. J CO2 Util 1:69–87

    Article  CAS  Google Scholar 

  • Spokas K, Koskinen W, Baker J, Reicosky D (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  PubMed  Google Scholar 

  • Tan X-f et al (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372

    Article  CAS  PubMed  Google Scholar 

  • Tatarková V, Hiller E, Vaculík M (2013) Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol Environ Saf 92:215–221

    Article  PubMed  CAS  Google Scholar 

  • Theis J, Rillig M (2009) Characteristics of biochar biological properties, biochar for environment management science and technology. Earthscan, London, p 85

    Google Scholar 

  • Titirici M-M, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822

    Article  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  CAS  PubMed  Google Scholar 

  • Van Zwieten L, Kimber S, Downie A, Morris S, Petty S, Rust J, Chan K (2010) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Res 48:569–576

    Article  CAS  Google Scholar 

  • Vandecasteele B, Mondini C, D’hose T, Russo S, Sinicco T, Quero A (2013) Effect of biochar amendment during composting and compost storage on greenhouse gas emissions, N losses and P availability. In: Proceedings of the 15th RAMIRAN International conference. Recycling of Organic Residues in Agriculture, Versailles, pp 3–5

    Google Scholar 

  • Verma M, M’hamdi N, Dkhili Z, Brar SK, Misra K (2014) Thermochemical transformation of agro-biomass into biochar: simultaneous carbon sequestration and soil amendment. In: Biotransformation of waste biomass into high value biochemicals. Springer, New York, pp 51–70

    Chapter  Google Scholar 

  • Wajid N, Ashfaq A, Asad A, Muhammad T, Muhammad A, Muhammad S, Khawar J, Ghulam MS, Syeda RS, Hafiz MH, Muhammad IAR, Muhammad ZH, Muhammad Habib ur R, Veysel T, Fahad S, Suad S, Aziz K, Shahzad A (2017) Radiation efficiency and nitrogen fertilizer impacts on sunflower crop in contrasting environments of Punjab. Pakistan Environ Sci Pollut Res 25:1822–1836. https://doi.org/10.1007/s11356-017-0592-z

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Zhang A, Liu S, Zhao J, Fang S, Jia D, Li F (2012) Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. J Power Sources 219:140–146

    Article  CAS  Google Scholar 

  • Xiong Z-Q, Guang-Xi X, Zhao-Liang Z (2007) Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere 17:146–155

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang Q, Han F, Chen Y, Yang H, Chen H (2016) Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renew Sust Energ Rev 53:1580–1590

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Z, Zhang T, Fahad S, Cui K, Nie L, Peng S, Huang J (2017) The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China. Front Plant Sci 8:1908. https://doi.org/10.3389/fpls.2017.01908

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Yuan T, Wang D, Tang J, Zhou S (2013) Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresour Technol 144:115–120

    Article  CAS  PubMed  Google Scholar 

  • Zahida Z, Hafiz FB, Zulfiqar AS, Ghulam MS, Fahad S, Muhammad RA, Hafiz MH, Wajid N, Muhammad S (2017) Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicol Environ Saf 144:11–18

    Article  CAS  Google Scholar 

  • Zhang P, Sheng G, Feng Y, Miller DM (2005) Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environ Sci Technol 39:5442–5448

    Article  CAS  PubMed  Google Scholar 

  • Zhang A et al (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zhang C, Song W, Ma Q, Xie L, Zhang X, Guo H (2016) Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy Fuel 30:4181–4190

    Article  CAS  Google Scholar 

  • Zhang X et al (2017) Generalized two-dimensional correlation infrared spectroscopy to reveal mechanisms of CO2 capture in nitrogen enriched biochar. Proc Combust Inst 36:3933–3940

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arif, M. et al. (2020). Biochar; a Remedy for Climate Change. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_8

Download citation

Publish with us

Policies and ethics