Skip to main content

Mast Cells in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1273))

Abstract

Mast cells are tissue-resident, innate immune cells that play a key role in the inflammatory response and tissue homeostasis. Mast cells accumulate in the tumor stroma of different human cancer types, and increased mast cell density has been associated to either good or poor prognosis, depending on the tumor type and stage. Mast cells play a multifaceted role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. Moreover, tumor-associated mast cells have the potential to shape the tumor microenvironment by establishing crosstalk with other tumor-infiltrating cells. This chapter reviews the current understanding of the role of mast cells in the tumor microenvironment. These cells have received much less attention than other tumor-associated immune cells but are now recognized as critical components of the tumor microenvironment and could hold promise as a potential target to improve cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, Befus AD (2010) Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 3(2):111–128. https://doi.org/10.1038/mi.2009.136

    Article  CAS  Google Scholar 

  2. Gentek R, Ghigo C, Hoeffel G, Bulle MJ, Msallam R, Gautier G, Launay P, Chen J, Ginhoux F, Bajenoff M (2018) Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48(6):1160–1171. e1165. https://doi.org/10.1016/j.immuni.2018.04.025

    Article  CAS  Google Scholar 

  3. Li Z, Liu S, Xu J, Zhang X, Han D, Liu J, Xia M, Yi L, Shen Q, Xu S, Lu L, Cao X (2018) Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 49(4):640–653. e645. https://doi.org/10.1016/j.immuni.2018.09.023

    Article  CAS  Google Scholar 

  4. Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM (2018) Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 282(1):35–46. https://doi.org/10.1111/imr.12636

    Article  CAS  Google Scholar 

  5. Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC (2019) Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2019.02.004

  6. Cildir G, Pant H, Lopez AF, Tergaonkar V (2017) The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med 214(9):2491–2506. https://doi.org/10.1084/jem.20170910

    Article  CAS  Google Scholar 

  7. Espinosa E, Valitutti S (2018) New roles and controls of mast cells. Curr Opin Immunol 50:39–47. https://doi.org/10.1016/j.coi.2017.10.012

    Article  CAS  Google Scholar 

  8. Chhiba KD, Hsu CL, Berdnikovs S, Bryce PJ (2017) Transcriptional heterogeneity of mast cells and basophils upon activation. J Immunol 198(12):4868–4878. https://doi.org/10.4049/jimmunol.1601825

    Article  CAS  Google Scholar 

  9. Dwyer DF, Barrett NA, Austen KF, Immunological Genome Project C (2016) Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol 17(7):878–887. https://doi.org/10.1038/ni.3445

    Article  CAS  Google Scholar 

  10. Meyer N, Zenclussen AC (2018) Mast cells-good guys with a bad image? Am J Reprod Immunol 80(4):e13002. https://doi.org/10.1111/aji.13002

    Article  Google Scholar 

  11. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452. https://doi.org/10.1038/nri2782

    Article  CAS  Google Scholar 

  12. Dudeck A, Koberle M, Goldmann O, Meyer N, Dudeck J, Lemmens S, Rohde M, Roldan NG, Dietze-Schwonberg K, Orinska Z, Medina E, Hendrix S, Metz M, Zenclussen AC, von Stebut E, Biedermann T (2018) Mast cells as protectors of health. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2018.10.054

  13. Krystel-Whittemore M, Dileepan KN, Wood JG (2015) Mast cell: a multi-functional master cell. Front Immunol 6:620. https://doi.org/10.3389/fimmu.2015.00620

    Article  CAS  Google Scholar 

  14. Dudeck J, Ghouse SM, Lehmann CH, Hoppe A, Schubert N, Nedospasov SA, Dudziak D, Dudeck A (2015) Mast-cell-derived TNF amplifies CD8(+) dendritic cell functionality and CD8(+) T cell priming. Cell Rep 13(2):399–411. https://doi.org/10.1016/j.celrep.2015.08.078

    Article  CAS  Google Scholar 

  15. Branco A, Yoshikawa FSY, Pietrobon AJ, Sato MN (2018) Role of histamine in modulating the immune response and inflammation. Mediat Inflamm 2018:9524075. https://doi.org/10.1155/2018/9524075

    Article  CAS  Google Scholar 

  16. Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F (2017) Are mast cells MASTers in cancer? Front Immunol 8:424. https://doi.org/10.3389/fimmu.2017.00424

    Article  CAS  Google Scholar 

  17. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682. https://doi.org/10.1038/nri3902

    Article  CAS  Google Scholar 

  18. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30(1):45–60. https://doi.org/10.1007/s10555-011-9286-z

    Article  CAS  Google Scholar 

  19. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279. https://doi.org/10.1182/blood-2008-03-147033

    Article  CAS  Google Scholar 

  20. Xiong Y, Liu L, Xia Y, Qi Y, Chen Y, Chen L, Zhang P, Kong Y, Qu Y, Wang Z, Lin Z, Chen X, Xiang Z, Wang J, Bai Q, Zhang W, Yang Y, Guo J, Xu J (2019) Tumor infiltrating mast cells determine oncogenic HIF-2alpha-conferred immune evasion in clear cell renal cell carcinoma. Cancer Immunol Immunother 68(5):731–741. https://doi.org/10.1007/s00262-019-02314-y

    Article  CAS  Google Scholar 

  21. Yu Y, Blokhuis B, Derks Y, Kumari S, Garssen J, Redegeld F (2018) Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models. Onco Targets Ther 7(11):e1504729. https://doi.org/10.1080/2162402X.2018.1504729

    Article  Google Scholar 

  22. Ronca R, Tamma R, Coltrini D, Ruggieri S, Presta M, Ribatti D (2017) Fibroblast growth factor modulates mast cell recruitment in a murine model of prostate cancer. Oncotarget 8(47):82583–82592. https://doi.org/10.18632/oncotarget.19773

    Article  Google Scholar 

  23. Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822(1):2–8. https://doi.org/10.1016/j.bbadis.2010.11.010

    Article  CAS  Google Scholar 

  24. Lv Y, Zhao Y, Wang X, Chen N, Mao F, Teng Y, Wang T, Peng L, Zhang J, Cheng P, Liu Y, Kong H, Chen W, Hao C, Han B, Ma Q, Zou Q, Chen J, Zhuang Y (2019) Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-alpha-PD-L1 pathway. J Immunother Cancer 7(1):54. https://doi.org/10.1186/s40425-019-0530-3

    Article  Google Scholar 

  25. Lv YP, Peng LS, Wang QH, Chen N, Teng YS, Wang TT, Mao FY, Zhang JY, Cheng P, Liu YG, Kong H, Wu XL, Hao CJ, Chen W, Zhu J, Han B, Ma Q, Li K, Zou Q, Zhuang Y (2018) Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis 9(10):1034. https://doi.org/10.1038/s41419-018-1100-1

    Article  CAS  Google Scholar 

  26. Aponte-Lopez A, Fuentes-Panana EM, Cortes-Munoz D, Munoz-Cruz S (2018) Mast cell, the neglected member of the tumor microenvironment: role in breast cancer. J Immunol Res 2018:2584243. https://doi.org/10.1155/2018/2584243

    Article  CAS  Google Scholar 

  27. Dabiri S, Huntsman D, Makretsov N, Cheang M, Gilks B, Bajdik C, Gelmon K, Chia S, Hayes M (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17(6):690–695. https://doi.org/10.1038/modpathol.3800094

    Article  Google Scholar 

  28. Amini RM, Aaltonen K, Nevanlinna H, Carvalho R, Salonen L, Heikkila P, Blomqvist C (2007) Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 7:165. https://doi.org/10.1186/1471-2407-7-165

    Article  CAS  Google Scholar 

  29. della Rovere F, Granata A, Familiari D, D’Arrigo G, Mondello B, Basile G (2007) Mast cells in invasive ductal breast cancer: different behavior in high and minimum hormone-receptive cancers. Anticancer Res 27(4B):2465–2471

    CAS  Google Scholar 

  30. Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, Gilks CB, Huntsman DG (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat 107(2):249–257. https://doi.org/10.1007/s10549-007-9546-3

    Article  Google Scholar 

  31. Sang J, Yi D, Tang X, Zhang Y, Huang T (2016) The associations between mast cell infiltration, clinical features and molecular types of invasive breast cancer. Oncotarget 7(49):81661–81669. https://doi.org/10.18632/oncotarget.13163

    Article  Google Scholar 

  32. Glajcar A, Szpor J, Pacek A, Tyrak KE, Chan F, Streb J, Hodorowicz-Zaniewska D, Okon K (2017) The relationship between breast cancer molecular subtypes and mast cell populations in tumor microenvironment. Virchows Arch 470(5):505–515. https://doi.org/10.1007/s00428-017-2103-5

    Article  CAS  Google Scholar 

  33. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23(35):8959–8967. https://doi.org/10.1200/JCO.2005.01.4910

    Article  Google Scholar 

  34. Shikotra A, Ohri CM, Green RH, Waller DA, Bradding P (2016) Mast cell phenotype, TNFalpha expression and degranulation status in non-small cell lung cancer. Sci Rep 6:38352. https://doi.org/10.1038/srep38352

    Article  CAS  Google Scholar 

  35. Carlini MJ, Dalurzo MC, Lastiri JM, Smith DE, Vasallo BC, Puricelli LI, Lauria de Cidre LS (2010) Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol 41(5):697–705. https://doi.org/10.1016/j.humpath.2009.04.029

    Article  CAS  Google Scholar 

  36. Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71(18):5987–5997. https://doi.org/10.1158/0008-5472.CAN-11-1637

    Article  CAS  Google Scholar 

  37. Fleischmann A, Schlomm T, Kollermann J, Sekulic N, Huland H, Mirlacher M, Sauter G, Simon R, Erbersdobler A (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981. https://doi.org/10.1002/pros.20948

    Article  CAS  Google Scholar 

  38. Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, Stattin P, Egevad L, Granfors T, Wikstrom P, Bergh A (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041. https://doi.org/10.2353/ajpath.2010.100070

    Article  CAS  Google Scholar 

  39. Hempel HA, Cuka NS, Kulac I, Barber JR, Cornish TC, Platz EA, De Marzo AM, Sfanos KS (2017) Low intratumoral mast cells are associated with a higher risk of prostate cancer recurrence. Prostate 77(4):412–424. https://doi.org/10.1002/pros.23280

    Article  CAS  Google Scholar 

  40. Zhao SG, Lehrer J, Chang SL, Das R, Erho N, Liu Y, Sjostrom M, Den RB, Freedland SJ, Klein EA, Karnes RJ, Schaeffer EM, Xu M, Speers C, Nguyen PL, Ross AE, Chan JM, Cooperberg MR, Carroll PR, Davicioni E, Fong L, Spratt DE, Feng FY (2019) The immune landscape of prostate cancer and nomination of PD-L2 as a potential therapeutic target. J Natl Cancer Inst 111(3):301–310. https://doi.org/10.1093/jnci/djy141

    Article  CAS  Google Scholar 

  41. Mehdawi L, Osman J, Topi G, Sjolander A (2016) High tumor mast cell density is associated with longer survival of colon cancer patients. Acta Oncol 55(12):1434–1442. https://doi.org/10.1080/0284186X.2016.1198493

    Article  CAS  Google Scholar 

  42. Murata T, Aritake K, Matsumoto S, Kamauchi S, Nakagawa T, Hori M, Momotani E, Urade Y, Ozaki H (2011) Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung carcinoma. Proc Natl Acad Sci U S A 108(49):19802–19807. https://doi.org/10.1073/pnas.1110011108

    Article  Google Scholar 

  43. Siebenhaar F, Metz M, Maurer M (2014) Mast cells protect from skin tumor development and limit tumor growth during cutaneous de novo carcinogenesis in a Kit-dependent mouse model. Exp Dermatol 23(3):159–164. https://doi.org/10.1111/exd.12328

    Article  CAS  Google Scholar 

  44. Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS (2010) A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J Immunol 185(11):7067–7076. https://doi.org/10.4049/jimmunol.1001137

    Article  CAS  Google Scholar 

  45. Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, Colonna M, Sibilia M (2012) Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 122(2):575–585. https://doi.org/10.1172/JCI61034

    Article  CAS  Google Scholar 

  46. Gulubova M, Vlaykova T (2009) Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 24(7):1265–1275. https://doi.org/10.1111/j.1440-1746.2007.05009.x

    Article  Google Scholar 

  47. Elezoglu B, Tolunay S (2012) The relationship between the stromal mast cell number, microvessel density, c-erbB-2 staining and survival and prognostic factors in colorectal carcinoma. Turk Patoloji Derg 28(2):110–118. https://doi.org/10.5146/tjpath.2012.01109

    Article  Google Scholar 

  48. Wu X, Zou Y, He X, Yuan R, Chen Y, Lan N, Lian L, Wang F, Fan X, Zeng Y, Ke J, Wu X, Lan P (2013) Tumor-infiltrating mast cells in colorectal cancer as a poor prognostic factor. Int J Surg Pathol 21(2):111–120. https://doi.org/10.1177/1066896912448836

    Article  Google Scholar 

  49. Ammendola M, Sacco R, Sammarco G, Donato G, Montemurro S, Ruggieri E, Patruno R, Marech I, Cariello M, Vacca A, Gadaleta CD, Ranieri G (2014) Correlation between serum tryptase, mast cells positive to tryptase and microvascular density in colo-rectal cancer patients: possible biological-clinical significance. PLoS One 9(6):e99512. https://doi.org/10.1371/journal.pone.0099512

    Article  CAS  Google Scholar 

  50. Suzuki S, Ichikawa Y, Nakagawa K, Kumamoto T, Mori R, Matsuyama R, Takeda K, Ota M, Tanaka K, Tamura T, Endo I (2015) High infiltration of mast cells positive to tryptase predicts worse outcome following resection of colorectal liver metastases. BMC Cancer 15:840. https://doi.org/10.1186/s12885-015-1863-z

    Article  CAS  Google Scholar 

  51. Chen Y, Yuan R, Wu X, He X, Zeng Y, Fan X, Wang L, Wang J, Lan P, Wu X (2016) A novel immune marker model predicts oncological outcomes of patients with colorectal cancer. Ann Surg Oncol 23(3):826–832. https://doi.org/10.1245/s10434-015-4889-1

    Article  CAS  Google Scholar 

  52. Mao Y, Feng Q, Zheng P, Yang L, Zhu D, Chang W, Ji M, He G, Xu J (2018) Low tumor infiltrating mast cell density confers prognostic benefit and reflects immunoactivation in colorectal cancer. Int J Cancer 143(9):2271–2280. https://doi.org/10.1002/ijc.31613

    Article  CAS  Google Scholar 

  53. Ammendola M, Marech I, Sammarco G, Zuccala V, Luposella M, Zizzo N, Patruno R, Crovace A, Ruggieri E, Zito AF, Gadaleta CD, Sacco R, Ranieri G (2015) Infiltrating mast cells correlate with angiogenesis in bone metastases from gastric cancer patients. Int J Mol Sci 16(2):3237–3250. https://doi.org/10.3390/ijms16023237

    Article  CAS  Google Scholar 

  54. Micu GV, Staniceanu F, Sticlaru LC, Popp CG, Bastian AE, Gramada E, Pop G, Mateescu RB, Rimbas M, Archip B, Bleotu C (2016) Correlations between the density of tryptase positive mast cells (DMCT) and that of new blood vessels (CD105+) in patients with gastric cancer. Rom J Intern Med 54(2):113–120. https://doi.org/10.1515/rjim-2016-0016

    Article  Google Scholar 

  55. Ribatti D, Guidolin D, Marzullo A, Nico B, Annese T, Benagiano V, Crivellato E (2010) Mast cells and angiogenesis in gastric carcinoma. Int J Exp Pathol 91(4):350–356. https://doi.org/10.1111/j.1365-2613.2010.00714.x

    Article  CAS  Google Scholar 

  56. Ammendola M, Sacco R, Zuccala V, Luposella M, Patruno R, Gadaleta P, Zizzo N, Gadaleta CD, De Sarro G, Sammarco G, Oltean M, Ranieri G (2016) Mast cells density positive to tryptase correlate with microvascular density in both primary gastric cancer tissue and loco-regional lymph node metastases from patients that have undergone radical surgery. Int J Mol Sci 17(11). https://doi.org/10.3390/ijms17111905

  57. Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K, Bentrem DJ (2010) Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 16(8):2257–2265. https://doi.org/10.1158/1078-0432.CCR-09-1230

    Article  CAS  Google Scholar 

  58. Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y, Abbruzzese JL, Liu YJ, Logsdon CD, Hwu P (2011) Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res 17(22):7015–7023. https://doi.org/10.1158/1078-0432.CCR-11-0607

    Article  CAS  Google Scholar 

  59. Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL, Wei LX, Dong JH (2011) Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 149(4):576–584. https://doi.org/10.1016/j.surg.2010.10.009

    Article  Google Scholar 

  60. Porcelli L, Iacobazzi RM, Di Fonte R, Serrati S, Intini A, Solimando AG, Brunetti O, Calabrese A, Leonetti F, Azzariti A, Silvestris N (2019) CAFs and TGF-beta signaling activation by mast cells contribute to resistance to gemcitabine/nabpaclitaxel in pancreatic cancer. Cancers (Basel) 11(3). https://doi.org/10.3390/cancers11030330

  61. Marech I, Ammendola M, Sacco R, Capriuolo GS, Patruno R, Rubini R, Luposella M, Zuccala V, Savino E, Gadaleta CD, Ribatti D, Ranieri G (2014) Serum tryptase, mast cells positive to tryptase and microvascular density evaluation in early breast cancer patients: possible translational significance. BMC Cancer 14:534. https://doi.org/10.1186/1471-2407-14-534

    Article  Google Scholar 

  62. Fakhrjou A, Naghavi-Behzad M, Montazeri V, Karkon-Shayan F, Norouzi-Panahi L, Piri R (2016) The relationship between histologic grades of invasive carcinoma of breast ducts and mast cell infiltration. South Asian J Cancer 5(1):5–7. https://doi.org/10.4103/2278-330X.179699

    Article  Google Scholar 

  63. Keser SH, Kandemir NO, Ece D, Gecmen GG, Gul AE, Barisik NO, Sensu S, Buyukuysal C, Barut F (2017) Relationship of mast cell density with lymphangiogenesis and prognostic parameters in breast carcinoma. Kaohsiung J Med Sci 33(4):171–180. https://doi.org/10.1016/j.kjms.2017.01.005

    Article  Google Scholar 

  64. Carpenco E, Ceausu RA, Cimpean AM, Gaje PN, Saptefrati L, Fulga V, David V, Raica M (2019) Mast cells as an indicator and prognostic marker in molecular subtypes of breast cancer. In Vivo 33(3):743–748. https://doi.org/10.21873/invivo.11534

    Article  CAS  Google Scholar 

  65. Reddy SM, Reuben A, Barua S, Jiang H, Zhang S, Wang L, Gopalakrishnan V, Hudgens CW, Tetzlaff MT, Reuben JM, Tsujikawa T, Coussens LM, Wani K, He Y, Villareal L, Wood A, Rao A, Woodward WA, Ueno NT, Krishnamurthy S, Wargo JA, Mittendorf EA (2019) Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer. Cancer Immunol Res 7(6):1025–1035. https://doi.org/10.1158/2326-6066.CIR-18-0619

    Article  CAS  Google Scholar 

  66. Imada A, Shijubo N, Kojima H, Abe S (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15(6):1087–1093. https://doi.org/10.1034/j.1399-3003.2000.01517.x

    Article  CAS  Google Scholar 

  67. Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88(12):2686–2692

    Article  CAS  Google Scholar 

  68. Nonomura N, Takayama H, Nishimura K, Oka D, Nakai Y, Shiba M, Tsujimura A, Nakayama M, Aozasa K, Okuyama A (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97(7):952–956. https://doi.org/10.1038/sj.bjc.6603962

    Article  CAS  Google Scholar 

  69. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104(50):19977–19982. https://doi.org/10.1073/pnas.0704620104

    Article  Google Scholar 

  70. Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F (2012) Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer 75(1):38–44. https://doi.org/10.1016/j.lungcan.2011.05.029

    Article  Google Scholar 

  71. Kabiraj A, Jaiswal R, Singh A, Gupta J, Singh A, Samadi FM (2018) Immunohistochemical evaluation of tumor angiogenesis and the role of mast cells in oral squamous cell carcinoma. J Cancer Res Ther 14(3):495–502. https://doi.org/10.4103/0973-1482.163693

    Article  CAS  Google Scholar 

  72. He L, Zhu Z, Chen S, Wang Y, Gu H (2016) Mammary tumor growth and metastasis are reduced in c-Kit mutant Sash mice. Cancer Med 5(6):1292–1297. https://doi.org/10.1002/cam4.696

    Article  CAS  Google Scholar 

  73. Raica M, Cimpean AM, Ceausu R, Ribatti D, Gaje P (2013) Interplay between mast cells and lymphatic vessels in different molecular types of breast cancer. Anticancer Res 33(3):957–963

    Google Scholar 

  74. Xiang M, Gu Y, Zhao F, Lu H, Chen S, Yin L (2010) Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep 23(3):615–619. https://doi.org/10.3892/or_00000676

    Article  CAS  Google Scholar 

  75. Hu G, Wang S, Cheng P (2018) Tumor-infiltrating tryptase(+) mast cells predict unfavorable clinical outcome in solid tumors. Int J Cancer 142(4):813–821. https://doi.org/10.1002/ijc.31099

    Article  CAS  Google Scholar 

  76. Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One 5(1):e8922. https://doi.org/10.1371/journal.pone.0008922

    Article  CAS  Google Scholar 

  77. Danelli L, Frossi B, Gri G, Mion F, Guarnotta C, Bongiovanni L, Tripodo C, Mariuzzi L, Marzinotto S, Rigoni A, Blank U, Colombo MP, Pucillo CE (2015) Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment. Cancer Immunol Res 3(1):85–95. https://doi.org/10.1158/2326-6066.CIR-14-0102

    Article  CAS  Google Scholar 

  78. Bolli E, Movahedi K, Laoui D, Van Ginderachter JA (2017) Novel insights in the regulation and function of macrophages in the tumor microenvironment. Curr Opin Oncol 29(1):55–61. https://doi.org/10.1097/CCO.0000000000000344

    Article  CAS  Google Scholar 

  79. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  Google Scholar 

  80. Lin C, Liu H, Zhang H, Cao Y, Li R, Wu S, Li H, He H, Xu J, Sun Y (2017) Tryptase expression as a prognostic marker in patients with resected gastric cancer. Br J Surg 104(8):1037–1044. https://doi.org/10.1002/bjs.10546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Muñoz-Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aponte-López, A., Muñoz-Cruz, S. (2020). Mast Cells in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_9

Download citation

Publish with us

Policies and ethics