Skip to main content

Simulation Study of Breast Cancer Lipid Changes Affecting Membrane Oxygen Permeability: Effects of Chain Length and Cholesterol

  • Chapter
  • First Online:
Oxygen Transport to Tissue XLII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1269))

Abstract

Tumor radiotherapy relies on intracellular oxygen (O2) to generate reactive species that trigger cell death, yet hypoxia is common in cancers of the breast. De novo lipid synthesis in tumors supports cell proliferation but also may lead to unusually high levels of the 16:1 palmitoleoyl (Y) phospholipid tail, which is two carbons shorter than the 18:1 oleoyl (O) tail abundant in normal breast tissue. Here, we use atomic resolution molecular dynamics simulations to test two hypotheses: (1) the shorter, 16:1 Y, tail of the de novo lipid biosynthesis product 1-palmitoyl,2-palmitoleoyl-phosphatidylcholine (PYPC) promotes lower membrane permeability relative to the more common lipid 1-palmitoyl,2-oleoylphosphatidylcholine (POPC), by reducing oxygen solubility in the interleaflet region, and (2) cholesterol further lessens the permeability of PYPC by reducing overall O2 solubility and promoting PYPC tail order adjacent to the rigid cholesterol ring system. The simulations conducted here indicate that PYPC has a permeability of 14 ± 1 cm/s at 37 °C, comparable to 15.4 ± 0.4 cm/s for POPC. Inclusion of cholesterol in a 1:1 ratio with phospholipid intensifies the effect of chain length, giving permeabilities of 10.2 ± 0.2 cm/s for PYPC/cholesterol and 11.0 ± 0.6 cm/s for POPC/cholesterol. These findings indicate that PYPC may not substantially influence membrane-level oxygen flux and is unlikely to hinder breast tissue oxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semenza GL (2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta 1863:382–391. https://doi.org/10.1016/j.bbamcr.2015.05.036

    Article  CAS  Google Scholar 

  2. Hou H, Mupparaju SP, Lariviere JP et al (2013) Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 179:343–351. https://doi.org/10.1667/RR2811.1

    Article  CAS  Google Scholar 

  3. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069. https://doi.org/10.1089/ars.2009.2541

    Article  CAS  Google Scholar 

  4. De Vos O, Van Hecke T, Ghysels A (2018) Effect of chain unsaturation and temperature on oxygen diffusion through lipid membranes from simulations. Adv Exp Med Biol 1072:399–404

    Article  Google Scholar 

  5. Ghysels A, Venable RM, Pastor RW, Hummer G (2017) Position-dependent diffusion tensors in anisotropic media from simulation: oxygen transport in and through membranes. J Chem Theory Comput 13:2962–2976. https://doi.org/10.1021/acs.jctc.7b00039

    Article  CAS  Google Scholar 

  6. Dotson RJ, Smith CR, Bueche K et al (2017) Influence of cholesterol on the oxygen permeability of membranes: insight from atomistic simulations. Biophys J 112:2336–2347. https://doi.org/10.1016/j.bpj.2017.04.046. PMCID: PMC5474842

    Article  CAS  Google Scholar 

  7. Angles G, Dotson R, Bueche K, Pias SC (2017) Predicted decrease in membrane oxygen permeability with addition of cholesterol. Adv Exp Med Biol 977:9–14. https://doi.org/10.1007/978-3-319-55231-6_2. PMCID: PMC5673249

    Article  CAS  Google Scholar 

  8. Widomska J, Raguz M, Subczynski WK (2007) Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim Biophys Acta 1768:2635–2645. https://doi.org/10.1016/j.bbamem.2007.06.018

    Article  CAS  Google Scholar 

  9. Hilvo M, Denkert C, Lehtinen L et al (2011) Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 71:3236–3245. https://doi.org/10.1158/0008-5472.CAN-10-3894

    Article  CAS  Google Scholar 

  10. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208. https://doi.org/10.1016/S0899-9007(99)00266-X

    Article  CAS  Google Scholar 

  11. Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113

    Article  CAS  Google Scholar 

  12. Jandl JH (1996) Blood: textbook of hematology, 2nd edn. Little, Brown and Company, Boston

    Google Scholar 

  13. Dotson RJ, Pias SC (2018) Reduced oxygen permeability upon protein incorporation within phospholipid bilayers. Adv Exp Med Biol 1072:405–411. https://doi.org/10.1007/978-3-319-91287-5_65. PMCID: PMC6202029

    Article  CAS  Google Scholar 

  14. Missner A, Pohl P (2009) 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10:1405–1414

    Google Scholar 

  15. Salomon-Ferrer R, Götz AW, Poole D et al (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9:3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  Google Scholar 

  16. Case DA, Berryman JT, Betz RM et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  17. Dickson CJ, Madej BD, Skjevik ÅA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10:865–879. https://doi.org/10.1021/ct4010307

    Article  CAS  Google Scholar 

  18. Madej BD, Gould IR, Walker RC (2015) A parameterization of cholesterol for mixed lipid bilayer simulation within the Amber Lipid14 force field. J Phys Chem B 119:12424–12435. https://doi.org/10.1021/acs.jpcb.5b04924

    Article  CAS  Google Scholar 

  19. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  20. Pan J, Tristram-Nagle S, Nagle JF (2009) Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E 80:021931. https://doi.org/10.1103/PhysRevE.80.021931

    Article  CAS  Google Scholar 

  21. Ferreira TM, Coreta-Gomes F, Ollila OHS et al (2013) Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Phys Chem Chem Phys 15:1976–1989. https://doi.org/10.1039/c2cp42738a

    Article  CAS  Google Scholar 

  22. Dotson RJ, Shea R, Byrd E, Pias SC. Optimization of an additive molecular oxygen model for membrane simulation studies. In preparation

    Google Scholar 

  23. Venable RM, Brown FLH, Pastor RW (2015) Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids 192:60–74. https://doi.org/10.1016/j.chemphyslip.2015.07.014

    Article  CAS  Google Scholar 

  24. The PyMOL Molecular Graphics System, Version 1.7.6.5 Schrödinger, LLC

    Google Scholar 

Download references

Acknowledgments

This work was supported by a gift from the Glendorn Foundation and by the National Institutes of Health under National Institute of General Medical Sciences grant P20GM103451. Lipid bilayer images were generated using PyMOL software [24].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally C. Pias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Q., Dotson, R.J., Angles, G., Pias, S.C. (2021). Simulation Study of Breast Cancer Lipid Changes Affecting Membrane Oxygen Permeability: Effects of Chain Length and Cholesterol. In: Nemoto, E.M., Harrison, E.M., Pias, S.C., Bragin, D.E., Harrison, D.K., LaManna, J.C. (eds) Oxygen Transport to Tissue XLII. Advances in Experimental Medicine and Biology, vol 1269. Springer, Cham. https://doi.org/10.1007/978-3-030-48238-1_3

Download citation

Publish with us

Policies and ethics