Skip to main content

Predicted Decrease in Membrane Oxygen Permeability with Addition of Cholesterol

  • Chapter
  • First Online:
Oxygen Transport to Tissue XXXIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 977))

Abstract

Aberrations in cholesterol homeostasis are associated with several diseases that can be linked to changes in cellular oxygen usage. Prior biological and physical studies have suggested that membrane cholesterol content can modulate oxygen delivery, but questions of magnitude and biological significance remain open for further investigation. Here, we use molecular dynamics simulations in a first step toward reexamining the rate impact of cholesterol on the permeation of oxygen through phospholipid bilayers. The simulation models are closely compared with published electron paramagnetic resonance (EPR) oximetry measurements. The simulations predict an oxygen permeability reduction due to cholesterol but also suggest that the EPR experiments may have underestimated resistance to oxygen permeation in the phospholipid headgroup region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39(11):1101–1113

    Article  CAS  PubMed  Google Scholar 

  2. Larsson M, Larsson K, Nylander T, Wollmer P (2003) The bilayer melting transition in lung surfactant bilayers: the role of cholesterol. Eur Biophys J 31(8):633–636

    CAS  PubMed  Google Scholar 

  3. Jandl J, Blood H (1996) Textbook of hematology, 2nd edn. Little, Brown and Company, Boston

    Google Scholar 

  4. Kawasaki K, Yin JJ, Subczynski WK et al (2001) Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys J 80(2):738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raguz M, Mainali L, Widomska J, Subczynski WK (2011) Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chem Phys Lipids 164(8):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wennberg CL, van der Spoel D, Hub JS (2012) Large influence of cholesterol on solute partitioning into lipid membranes. J Am Chem Soc 134(11):5351–5361

    Article  CAS  PubMed  Google Scholar 

  7. Khan N, Shen J, Chang TY et al (2003) Plasma membrane cholesterol: a possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism. Biochemistry 42(1):23–29

    Article  CAS  PubMed  Google Scholar 

  8. Menchaca HJ, Michalek VN, Rohde TD et al (1998) Decreased blood oxygen diffusion in hypercholesterolemia. Surgery 124(4):692–698

    Article  CAS  PubMed  Google Scholar 

  9. Widomska J, Raguz M, Subczynski WK (2007) Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim Biophys Acta 1768(10):2635–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Case DA, Berryman JT, Betz RM, et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  11. Salomon-Ferrer R, Götz AW, Poole D et al (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888

    Article  CAS  PubMed  Google Scholar 

  12. Dickson CJ, Madej BD, Skjevik ÅA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10(2):865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madej BD, Gould IR, Walker RC (2015) A parameterization of cholesterol for mixed lipid bilayer simulation within the Amber Lipid14 force field. J Phys Chem B 119(38):12424–12435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jorgensen WL, Jenson C (1998) Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J Comput Chem 19(10):1179–1186

    Article  CAS  Google Scholar 

  15. Skjevik AA, Madej BD, Walker RC, Teigen K (2012) LIPID11: a modular framework for lipid simulations using Amber. J Phys Chem B 116(36):11124–11136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marrink S-J, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98(15):4155–4168

    Article  CAS  Google Scholar 

  17. Shea R, Smith C, Pias SC (2016) Magnification of cholesterol-induced membrane resistance on the tissue level: implications for hypoxia. Adv Exp Med Biol 923:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schrödinger LLC (2015) The PyMOL molecular graphics system, Version 1.7.6.5

    Google Scholar 

  19. Tummers B (2006) DataThief III

    Google Scholar 

Download references

Acknowledgments

We thank Ross Walker and Benjamin Madej for providing advance access to the cholesterol parameters used in this study. James Ryan Bredin developed the O2 parameters used in this work. Daniel Lyons contributed valuable computing expertise. The molecular images were generated using PyMOL software [18], and DataThief software [19] was used to infer the experimental values reported in Fig. 2.1b from published plots. SCP thanks James Kindt and Snežna Rogelj for professional mentoring. This work was supported by the NIH under NIGMS grant P20GM103451 and by a gift from the Glendorn Foundation. The content is solely the responsibility of the authors. We used computing resources of TACC at UT Austin, accessed through XSEDE (funded by NSF grant ACI-1053575), as well as the EXXACT MD SimCluster (“Electra”) at New Mexico Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally C. Pias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Angles, G., Dotson, R., Bueche, K., Pias, S.C. (2017). Predicted Decrease in Membrane Oxygen Permeability with Addition of Cholesterol. In: Halpern, H., LaManna, J., Harrison, D., Epel, B. (eds) Oxygen Transport to Tissue XXXIX. Advances in Experimental Medicine and Biology, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-319-55231-6_2

Download citation

Publish with us

Policies and ethics