Skip to main content

Updates of Pigeonpea Breeding and Genomics for Yield Improvement in India

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Nutrient-rich food crops like pigeonpea are important to food and nutritional security worldwide. In India, pigeonpea is the second most important pulse crop after chickpea. Apart from imparting a range of health benefits, pigeonpea has great significance in low-input food production systems. Breeding efforts primarily relying on hybridization and selection have delivered several high-yielding cultivars suited to a range of agroclimatic zones in India. The breeding programs, however, need to be more efficient in order to meet the increasing dietary needs of burgeoning population. In the context, new breeding tools and technologies are now in place to accelerate breeding progress. For example, a variety of modern genomic resources that have been developed recently include whole-genome sequence and re-sequencing and large-scale molecular markers for molecular breeding. Heterosis breeding, genome-wide prediction and speed breeding could play significant role in improving yield gains in pigeonpea. In this chapter, we outlined the major milestones achieved in pigeonpea breeding and discussed the current status of genomic resources along with the possibilities of emerging technologies like speed breeding for integration in routine breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ariyanayagam RP, A Nageshwar Rao, PP Zaveri (1995) Cytoplasmic‐Genic Male‐Sterility in interspecific matings of Cajanus. Crop Science 35(4):981–985

    Google Scholar 

  • Ae N, Arihara J, Okada K et al (1990) Phosphorus uptake by pigeonpea and its role in cropping systems of the Indian sub-continent. Science 248:477–480

    CAS  PubMed  Google Scholar 

  • Araujo SS, Beebe S, Crespi M, Delbreil B, Gonzalez EM, Gruber V, Lejeune I, Link W, Monteros MJ, Prats E, Rao I, Vadez V, Vaz MC (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 4(1-3):237–280. https://doi.org/10.1080/07352689.2014.898450

    Article  CAS  Google Scholar 

  • Aruna R, Rao DM, Sivaramakrishnan S, Reddy JL, Bramel P, Upadhyaya H (2008) Efficiency of three DNA markers in revealing genetic variation among wild Cajanus species. Plant Genet Res 7:113–121

    Google Scholar 

  • Bisht VS, Kannaiyan J, Nene YL (1988) Methods of metalaxyl application to control of Phytophthora blight in pigeonpea. Inter Pigeonpea Newsletter 8:9–10

    Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh R, Singh D, Saxena KB, KaviKishor PB, Singh NK, Town CD, May GD, Cook DR, Varshney RK (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biol 11:56. https://doi.org/10.1186/1471-2229-11-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A, Kavi Kishor PB, Cook DR, Varshney RK (2012) An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125:1325–1338. https://doi.org/10.1007/s00122-012-1916-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Singh IP, Yadav AK, Pathak A, Soren KR, Chaturvedi SK et al (2015) Utility of informative SSR markers in the molecular characterization of cytoplasmic genetic male sterility-based hybrid and its parents in pigeonpea. Nat Acad Sci Let 38:13–19. https://doi.org/10.1007/s40009-014-0288-6

    Article  CAS  Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993. https://doi.org/10.1007/s00299-016-1949-3

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Jha A, Singh IP, Pandey G, Pareek S, Basu PS, Chaturvedi SK, Singh NP (2017a) Novel CMS lines in pigeonpea [Cajanus cajan (L.) Millspaugh] derived from cytoplasmic substitutions, their effective restoration and deployment in hybrid breeding. Crop J 5:89–94. https://doi.org/10.1016/j.cj.2016.10.003

    Article  Google Scholar 

  • Bohra A, Jha R, Pandey G, Patil PG, Saxena RK, Singh IP, Singh D, Mishra RK, Mishra A, Singh F, Varshney RK, Singh NP (2017b) New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in Pigeonpea [Cajanus cajan (L.) Millspaugh]. Front Plant Sci 8:1–15. https://doi.org/10.3389/fpls.2017.00377

    Article  Google Scholar 

  • Bohra A, Bharadwaj C, Radhakrishnan T, Singh NP, Varshney RK (2019) Translational genomics and molecular breeding for enhancing precision and efficiency in crop improvement programs: some examples in legumes. Indian J Genet Plant Breed 79(Suppl):227–240

    CAS  Google Scholar 

  • Chapman AL, Muchow RC (1985) Nitrogen accumulated and partitioned at maturity by grain legumes grown under different water regimes in a semi-arid tropical environment. Field Crop Res 11:69–79. https://doi.org/10.1016/0378-4290(85)90092-9

    Article  Google Scholar 

  • Chauhan YS, Venkataratnam N, Sheldrake AR (1987) Factors affecting growth and yield of short duration pigeonpea and its potential for multiple harvests. J Agricult Sci 109:519–529. https://doi.org/10.1017/S0021859600081739

    Article  Google Scholar 

  • Chauhan YS, Johansen C, Saxena KB (1995) Physiological basis of yield variation in short duration pigeonpea grown in different environments of the semi-arid tropics. J Agron Crop Sci 174:163–171. https://doi.org/10.1111/j.1439-037X.1995.tb01099.x

    Article  Google Scholar 

  • Chauhan YS, Silim SN, Kumar RJVDK, Johansen C (1997) A pot technique to screen pigeonpea cultivars for resistance to waterlogging. J Agron Crop Sci 178:179–183. https://doi.org/10.1111/j.1439-037X.1997.tb00487.x

    Article  Google Scholar 

  • Chauhan YS, Wallace DH, Johansen C, Singh L (1998) Genotype-by-environment interaction effect on yield and its physiological bases in short-duration pigeonpea. Field Crop Res 59:141–150. https://doi.org/10.1016/S0378-4290(98)00117-8

    Article  Google Scholar 

  • Choudary AK, Sultana R, Pratap A, Nadarajan N, Jha UC (2011) Breeding for abiotic stress in pigeonpea. J Food Leg 24(3):165–174

    Google Scholar 

  • Dahiya BS, Brar JS, Bhullar BS (1977) Inheritance of protein contents and its correlation with grain yield in pigeonpea (Cajanus cajan (L.). Millsp.). Qualitas Plant 27:327–334

    CAS  Google Scholar 

  • Deshmukh NY (1959) Sterile mutants in tur (Cajanus cajan). Nagpur Agricult College Marg 33:20–21

    Google Scholar 

  • Dhanasekar P, Dhumal KH, Reddy KS (2010) Identification of RAPD marker linked to plant type gene in pigeonpea. Indian J Biotechnol 9:58–63

    CAS  Google Scholar 

  • Dua RP, Sharma PC (1996) Physiological basis of salinity tolerance in pigeonpea (Cajanus cajan) and method of testing materials under highly variable soil conditions. Indian J Agric Sci 66:405–412

    Google Scholar 

  • Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18:153–164. https://doi.org/10.1093/dnares/dsr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durga BK (1989) Genetic studies of protein content and nitrogen accumulation in pigeonpea. Ph.D. thesis, Osmania University, Hyderabad

    Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney RK, Cook DR, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17. https://doi.org/10.1186/1471-2229-11-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017) FAOSTAT database. http://www.fao.org/faostat/en/#data/QC

  • Gaur PM, Srinivasan S, Gowda CLL, Rao BV (2007) Rapid generation advancement in chickpea. SAT eJ 3:1

    Google Scholar 

  • Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pande S, Wesley V, Saxena RK, Saxena KB, KaviKishor PB, Varshney RK (2011) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crop Res 123:53–61. https://doi.org/10.1016/j.fcr.2011.04.011

    Article  Google Scholar 

  • Goodman MM (1990) Genetic and germplasm stocks worth conserving. J Hered 81:11–16. https://doi.org/10.1093/oxfordjournals.jhered.a110919

    Article  CAS  PubMed  Google Scholar 

  • Gowda CLL, Upadhyaya HD, Sharma S, Varshney RK, Dwivedi SL (2013) Exploiting genomic resources for efficient conservation and use of chickpea, groundnut and pigeonpea collections for crop improvement. Plant Genome 6:1–11. https://doi.org/10.3835/plantgenome2013.05.0016

    Google Scholar 

  • Green JM, Sharma D, Reddy LJ, Saxena KB, Gupta SC, Jain KC, Reddy BVS, Rao MR (1981) Methodology and progress in the ICRISAT pigeonpea breeding program. Proceedings of the international workshop on Pigeonpeas, ICRISAT, Patancheru, 1: 437–449

    Google Scholar 

  • Hingane AJ, Saxena KB, Patil SB et al (2015) Mechanism of water-logging tolerance in pigeonpea. Indian J Genet Plant Breed 75(2):208. https://doi.org/10.5958/0975-6906.2015.00032.2

    Article  Google Scholar 

  • Jadhav DR, Mallikarjuna N, Sharma HC, Saxena KB (2012) Introgression of Helicoverpa armigera resistance from Cajanus acutifolius- a wild relative from secondary gene pool of pigeon pea (Cajanus cajan). Asian J Agricult Sci 4:242–248

    Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB, Farmerb AD, Mulaosmanovic B, Kramerb R et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using sanger and second-generation sequencing platforms molecular plant. 5:1020. https://doi.org/1028 10.1093/mp/ssr111

  • Kumar Rao JVDK, Dart PJ, Sastry PVSS (1983) Residual effect of pigeonpea (Cajanus cajan) on yield and nitrogen response of maize. Exp Agric 19:131–141

    Google Scholar 

  • Kumar A, Priyanka VL, Lall V, Lal D (2011) Abiotic factors and pigeonpea pod fly, Melanagromyza Obtusa (Malloch). Indian J Entomol 73:59–62

    Google Scholar 

  • Kumar CVS, Mula MG, Singh IP, Saxena RK, Rao G, Varshney RK (2014) Pigeonpea perspective in India. Proceedings of Philippine congress 1–5

    Google Scholar 

  • Lawn RJ, Troedson RJ (1990) Pigeonpea: physiology of yield formation. The Pigeonpea. CAB International Wallingford, pp 179–208

    Google Scholar 

  • Li H, Rasheed A, Hickey L, He Z (2018) Fast forwarding genetic gain. Trends Plant Sci 23:184–186. https://doi.org/10.1016/j.tplants.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  • Mahta DN, Dave BB (1931) Studies in Cajanus indicus. Mem Dept Agric India 19:1–25

    Google Scholar 

  • Mallikarjuna N, Sharma HC, Upadhyaya HD (1997) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. J SAT Agric Res 3(1):1–4

    Google Scholar 

  • Manimekalai G, Neelkantan S, Annapan RS (1979) Chemical composition and cooking quality of some improved varieties of red gram dhal. Madras Agricult J 66:812–816

    Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin D, Vandenberg A (2015) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and fababean. Vitro Cell Develop Bio–Plant 51:71–79. https://doi.org/10.1007/s11627-014-9647-8

    Article  CAS  Google Scholar 

  • Muchow RC (1985) An analysis of the effects of water deficits on grain legumes grown in a semi-arid tropical environment in terms of radiation interception and its efficiency of use. Field Crop Res 11:309–323. https://doi.org/10.1016/0378-4290(85)90111-X

    Article  Google Scholar 

  • Mallikarjuna N, KB Saxena (2005) A new cytoplasmic nuclear male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142(1–2):143–148

    Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into cultivated pigeonpea, C. cajan. Euphytica 149(1–2):161–167

    Google Scholar 

  • Nadimpalli RG, Jarret JL, Pathak SC, Kochert G (1993) Phylogenetic relationships of pigeonpea (Cajanus cajan) based on nuclear restriction fragment length polymorphism. Genome 36:216–223

    CAS  PubMed  Google Scholar 

  • Nene YL, Kannaiyan J, Reddy MV (1981) Pigeonpea disease resistance screening technique. Information bulletin 4: ICRISAT, Patancheru.

    Google Scholar 

  • Pal M, Gerewal JS, Sarbhoy AK (1970) A new stem rot of arhar caused by Phytophthora. Indian Phytopathol 23:583–587

    Google Scholar 

  • Panguluri SK, Janaiah J, Govil JN, Kumar PA, Sharma PC (2006) AFLP fingerprinting in pigeonpea (Cajanus cajan L. Millsp.) and its wild relatives. Genet Resour Crop Evol 53:523–531. https://doi.org/10.1007/s10722-004-2031-5

    Article  Google Scholar 

  • Patel KA, Acharya S, Prajapati N, Patel JB (2012) Molecular identification of cytoplasmic male sterility based hybrid GTH 1 and its parents in pigeonpea. Indian J Genet Plant Breed 72:94–96

    CAS  Google Scholar 

  • Patil PG, Dubey J, Bohra A, Mishra RK, Saabale PR, Das A, Rathore M, Singh NP (2017a) Association mapping to discover significant marker-trait associations for resistance against Fusarium wilt variant 2 in pigeonpea [Cajanus cajan (L.) Millspaugh] using SSR markers. J Appl Genet 58:307–319. https://doi.org/10.1007/s13353-017-0400-y

    Article  CAS  PubMed  Google Scholar 

  • Patil PG, Bohra A, Dubey J, Saabale PR, Mishra RK, Pandey G, Das A, Rathore M, Singh F, Singh NP (2017b) Genetic analysis and molecular resistance to race 2 of Fusarium wilt in pigeonpea [Cajanus cajan (L.) Millsp.]. Crop Prot 100:117–123. https://doi.org/10.1016/j.cropro.2017.06.016

    Article  Google Scholar 

  • Pazhamala L, Saxena RK, Singh VK et al (2015) Genomic-assisted breeding boosting crop improvement in pigeonpea Cajanus cajan. Front Plant Sci 6:1–12. https://doi.org/10.3389/fpls.2015.00050

    Article  Google Scholar 

  • Pazhamala LT, Shilp S, Saxena RK, Garg V, Krishnamurthy L, Verdier J, Varshney RK (2017) Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. J Exp Bot 68:2037–2054. https://doi.org/10.1093/jxb/erx010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera AM, Pooni HS, Saxena KB (2001) Components of genetic variation in short duration pigeonpea crosses under water logging condition. J Genet Plant Breed 55:31–38

    CAS  Google Scholar 

  • Promila K, Kumar S (1982) Effect of salinity on flowering and yield characters in pigeonpea. Indian J Plant Physiol 25:252–225

    Google Scholar 

  • Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ, Byregowda M, Singh NK, Varshney RK (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol 10:45. https://doi.org/10.1186/1471-2229-10-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanujam S, Singh SP (1981) Pigeonpea breeding in the all India coordinated programme. International workshop on pigeonpea, 15–19 Dec 1980. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 403–414

    Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Neelima MG, Shanmugam NB, Kumar ARV, Sarangi SK, Kumar PA, Udayakumar M (2012) Expression of a synthetic Cry1AcF gene in transgenic pigeonpea confers resistance to Helicoverpa armigera. J Appl Entomol 136:675–687. https://doi.org/10.1111/j.1439-0418.2011.01703.x

    Article  CAS  Google Scholar 

  • Ratnaparkhe MB, Gupta VS, Ven Murthy MR, Ranjekar PK (1995) Genetic fingerprinting of pigeonpea (Cajanus cajan (L.) Millsp) and its wild relatives using RAPD markers. Theor Appl Genet 91:893–898. https://doi.org/10.1007/BF00223897

    Article  CAS  PubMed  Google Scholar 

  • Reddy LJ, Faris DG (1981) A cytoplasmic-nuclear male sterile line in pigeonpea. Inter Pigeonpea Newslet 1:16–17

    Google Scholar 

  • Reddy BVS, Green JM, Bisen SS (1978) Genetic male-sterility in Pigeonpea. Crop Sci 18:362–364

    Google Scholar 

  • Reddy LJ, Upadhyaya HD, Gowda CLL, Singh S (2005) Development of core collection in pigeonpea [Cajanus cajan (L.) Millsp.] using geographic and qualitative morphological descriptors. Genet Resour Crop Evol 52:1049–1056. https://doi.org/10.1007/s10722-004-6152-7

    Article  Google Scholar 

  • Sandhu JS, Gupta SK, Singh S, Dua RP (2007) Genetic variability for cold tolerance in pigeonpea. J SAT Agric Res 5(1)

    Google Scholar 

  • Sandhu JS, Singh I, Gupta SK, Rathore P, Kumar A, Singh S (2015) Development of new early maturing cytoplasmic genetic male sterile lines in pigeonpea (Cajanus cajan L. Millspaugh). J Food Leg 28:185–189

    Google Scholar 

  • Saxena KB (1996) Rapid generation turnover in short duration pigeonpea. Inter Chickpea Pigeonpea Newslet 3:57–59

    Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeonpea-a review. Trop Plant Biol 1:159–178. https://doi.org/10.1007/s12042-008-9014-1

    Article  Google Scholar 

  • Saxena KB, Kumar RV (2003) Development of cytoplasmic nuclear malesterility system in Pigeonpea using C. scarabaeoides (L.) Thouars. Indian J Genet 63:225–229

    Google Scholar 

  • Saxena KB, Sawargaonkar SL (2015) Genetic enhancement of seed proteins in pigeonpea – methodologies, accomplishments and opportunities. Inter J Sci Res 4:3–7

    Google Scholar 

  • Saxena KB, Sharma D (1990) Pigeonpea genetics. In: The Pigeonpea. CAB International, Wallingford, pp 137–158

    Google Scholar 

  • Saxena KB, Wallis ES, Byth DE (1983) A new gene for male sterility in Pigeonpeas. J Hered 51:419–421

    Google Scholar 

  • Saxena KB, Chandrasena GDSN, Hettiarachi K, Iqbal YB, Fonseka HHD, Jayasekera SJBA (2002) Evaluation of pigeonpea accession of selected lines for reaction to Maruca. Crop Sci 42:615–618. https://doi.org/10.2135/cropsci2002.6150

    Article  Google Scholar 

  • Saxena RK, Saxena K, Varshney RK (2010b) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]. Mol Breed 26:371–380. https://doi.org/10.1111%2Fpbi.12685

    CAS  Google Scholar 

  • Saxena RK, Von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena KB et al (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9:e88568. https://doi.org/10.1371/journal.pone.0088568

    PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Hingane AJ, Choudhary AK, Bharathi M (2015) A short-cut approach for breeding pigeonpea hybrids with tolerance to biotic and abiotic stresses. Inter J Sci Res 4:1–3

    Google Scholar 

  • Saxena KB, Tikle AN, Kumar RV, Choudhary AK, Bahadur B (2016a) Nectarivore-aided hybridization and its exploitation for productivity enhancement in pigeonpea. Inter J Sci Res 6:321–328

    Google Scholar 

  • Saxena KB, Sameer Kumar CV, Sultana R, Saxena RK, Hingane AJ (2016b) Unbelievably, the hybrid pigeonpea is now a reality. Paper presented at National Conference in bringing self-sufficiency in pulses for eastern India, 5–6 Aug 2016, Sabour

    Google Scholar 

  • Saxena RK, Kale SM, KumarV PS, Joshi S, Singh VK, GargV DRR, Sharma M, Yamini KN, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, Varshney RK (2017a) Genotyping by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7:1813. https://doi.org/10.1038%2Fs41598-017-01535-4

    PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Singh VK, Kale SM, Tathineni R, Parupalli S, Kumar V, Garg V, Das RR, Sharma M, Yamini KN, Muniswamy S, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, KaviKishorPB VRK (2017b) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Reports 7:1911. https://doi.org/10.1038/s41598-017-01537-2

    Article  CAS  Google Scholar 

  • Saxena KB, Saxena RK, Varshney RK (2017c) Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breed 136:954–957. https://doi.org/10.1111/pbr.12538

    Article  CAS  Google Scholar 

  • Saxena RK, Kale SM, Kumar V et al (2017d) Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. PLoS One 7:1–9. https://doi.org/10.1038/s41598-017-01535-4

    Article  CAS  Google Scholar 

  • Saxena RK, Patel K, Sameer Kumar CV, Tyagi K, Saxena KB, Varshney RK (2018a) Molecular mapping and inheritance of restoration of fertility (Rf) inA4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.). Theor Appl Genet 131:1605–1614. https://doi.org/10.1007/s00122-018-3101-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Choudhary AK, Saxena RK (2018b) Breeding pigeonpea cultivars for intercropping: synthesis and strategies. Breed Sci 68:1–9. https://doi.org/10.1270/jsbbs.17105

    Article  Google Scholar 

  • Saxena KB, Saxena RK, Hickey LT, Varshney RK (2019) Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica 215:202. https://doi.org/10.1007/s10681-019-2520-4

    Article  Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309. https://doi.org/10.3389/fpls.2013.00309

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Ghosh R, Telangare R, Rathore A, Saifulla M, Mahalinga DM, Saxena DR, Jain YK (2016) Environmental influences on pigeonpea-Fusarium udum interactions and stability of genotypes. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.00253

    Article  CAS  Google Scholar 

  • Sharma P, Singh I, Sirari A, Singh S, Khosla G (2018) Genetic divergence studies through microsatellite markers in pigeonpea [Cajanus cajan (L) Millsp.]. Legume Res. https://doi.org/10.18805/LR-4022

  • Sharma P, Singh I, Sirari A et al (2019) Inheritance and molecular mapping of restorer-of-fertility (Rf) gene in A2 hybrid system in pigeonpea (Cajanus cajan). Plant Breed 138:741–747. https://doi.org/10.1111/pbr.12737

    Article  CAS  Google Scholar 

  • Shaw FJF, Khan AR, Singh H (1933) Studies on Indian pulses. Indian J Agricult Sci 3:1–36

    Google Scholar 

  • Sheldrake AR, Narayanan A (1979) Comparisons of earlier and later-formed pods of pigeonpea (Cajanus cajan (L.) Millsp.). Ann Bot 43:459–466

    Google Scholar 

  • Silim SN, Gwata ET, Coeb R, Omanga PA (2007) Response of pigeonpea genotypes of differrent maturity duration to temperature and photoperiod in Kenya. Afr Crop Sci J 15:73–81

    Google Scholar 

  • Singh UP and Chauhan VB (1992) Phytophthora blight of pigeonpea. pp 375-387, In: Plant diseases of international importance. Diseases of cereals and pulses. Vol.1. (Singh US, Mukhopadhyay AN, Kumar J, Chaube HS, eds.). Englewood Cliffs, New Jersey 07632, USA: Prince Hall, Inc.

    Google Scholar 

  • Singh U, Jain KC, Jambunathan R, Faris DG (1984) Nutritional quality of vegetable pigeonpea [Cajanus cajan (L.). Millsp.]: dry matter accumulation, carbohydrates and proteins. J Food Sci 49:799–802. https://doi.org/10.1111/j.1365-2621.1984.tb13214.x

    Article  CAS  Google Scholar 

  • Singh N, Tyagi RK, Pandey C (2013) Genetic resources of pigeon- pea: conservation for use. National Bureau of Plant Genetic Resources (NBPGR), New Delhi, pp 1–49

    Google Scholar 

  • Singh M, Gautam NK, Rana MK, Dahiya OP, Dutta M, Bansal KC (2014) Pigeon pea genetic resources and its utilization in India, current status and future prospects. J Plant Sci Res 1:107

    Google Scholar 

  • Singh S, Grover P, Kaur J, Singh I, Kaur J, Singh P, Choudhary OP, Hingane A, Kumar CVV, Saxena KB (2016) Genetic variability of pigeonpea for water logging and salinity tolerance under in vitro and in vivo conditions. Am J Exp Agricult 12:1–13. https://doi.org/10.9734/AJEA/2016/24071

    Article  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM et al (2017) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15:906–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Singh I, Sharma P, Gupta M, Singh S (2018) Devising selection criteria based on variability and association studies in segregating populations derived from an interspecific cross between Cajanus scarabaeoides × C. cajan. Legum Res. https://doi.org/10.18805/LR-4137

  • Sinha P, Saxena KB, Saxena RK et al (2015) Association of nad7agene with cytoplasmic male sterility in pigeonpea. Plant Genome 8:2

    Google Scholar 

  • Sinha P, Pazamala LT, Singh VK, Saxena RK, Krishamurty L, Azam S et al (2016) Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeonpea (Cajanus cajan). Front Plant Sci 6:1–9

    CAS  Google Scholar 

  • Sivaramakrishnan S, Seetha K, Rao AN, Singh L (1997) RFLP analysis of cytoplasmic male sterile lines in Pigeonpea (Cajanus cajan L. Millsp.). Euphytica 126:293–299

    Google Scholar 

  • Souframanien J, Manjaya JG, Krishna TG, Pawar SE (2003) Random amplified polymorphic DNA analyses of cytoplasmic male sterile and male fertile pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 129:293–299. https://doi.org/10.1023/A:1022212127025

    Article  CAS  Google Scholar 

  • Srivastava N, Vadez V, Upadhyaya HD, Saxena KB (2006) Screening for intra and interspecific variability for salinity tolerance in pigeonpea (Cajanus cajan) and its related wild species. J SAT Agric Res 2:1–12

    Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao JVDKK (1991) Comparative salinity responses among pigeonpea genotypes and their wild relatives. Crop Sci 31:415–418

    Google Scholar 

  • Sultana R, Vales MI, Saxena KB, Rathore A, Rao S, Rao SK, Mula M, Kumar RV (2013) Water-logging tolerance in pigeonpea [Cajanus cajan (L.) Millsp.]: genotypic variability and identification of tolerant genotypes. J Agric Sci 151:659–671. https://doi.org/10.1017/S0021859612000755

    Article  Google Scholar 

  • Saxena KB, Kumar RV, Srivastava N, Shiying B (2005) A cytoplasmic-nuclear male-sterility system derived from a cross between Cajanus cajanifolius and Cajanus cajan. Euphytica 145(3):289–294

    Google Scholar 

  • Sharma M, Ghosh R (2016) A reliable mthod for Phytophthora cajani isolation, sporangia, zoospore production and in planta infection of pigeonpea. Bio-protocol 6:1–9

    Google Scholar 

  • Saxena KB (2013) A novel source of CMS in pigeonpea derived from Cajanus reticulatus. Ind J Genet 73:259–263

    Google Scholar 

  • Saxena KB, Ravikoti VK, Dalvi VA, Pandey LB, Gaddikeri G (2010) Development of Cytoplasmic-Nuclear Male Sterility, its iheritance, and potential use in hybrid pigeonpea breeding. Journal of Heredity 101(4):497–503

    Google Scholar 

  • Srikanth S, Rao MV, Mallikarjuna N (2014) Interspecific hybridization between Cajanus cajan (L.) Millsp. and C. lanceolatus (WV Fitgz) van der Maesen. Plant Genet Resour 12:255–258

    Google Scholar 

  • Turnbull LV, Whiteman PC, Byth DE (1981) The influence of temperature and photoperiod on floral development of early flowering pigeonpea. Proceedings of the international workshop on pigeonpea, ICRISAT, Patancheru, 15–19 Dec 1980, vol 2, pp 217–222

    Google Scholar 

  • Tuteja R, Saxena RK, Davila J et al (2013) Cytoplasmic male sterility associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 20:485–495. https://doi.org/10.1093/dnares/dst025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikka SBS, Parmar LD and Chauhan RM (1997) First record of cytoplasmic-genic male-sterility system in Pigeonpea and its related wild species. J Plant Physio 137:64–71

    Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini-core subset for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132. https://doi.org/10.2135/cropsci2006.01.0032

    Article  Google Scholar 

  • Upadhyaya HD, Reddy KN, Shivali S, Varshney RK, Bhattacharjee R, Singh S, Gowda CLL (2011) Pigeonpea composite collection for enhanced utilization of germplasm in crop improvement programs. Plant Genet Res 9:97–108. https://doi.org/10.1017/S1479262110000419

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Reddy KN, Sharma S, Dwivedi SL, Ramachandran S (2016) Enhancing the value of genetic resources for use in pigeonpea improvement. Legume Perspect 11:13–16

    Google Scholar 

  • Vales MI, Srivastava RK, Sultana R, Singh S et al (2012) Breeding for earliness in pigeonpea: development of new determinate and non-determinate lines. Crop Sci 52(6):2507–2516. https://doi.org/10.2135/cropsci2012.04.0251

    Article  Google Scholar 

  • Van der Maesen LJG (1986) Cajanus DC and Atylosia W and A (Leguminosae). Agricultural University, Wageningen

    Google Scholar 

  • Van der Maesen LJG (1990) Pigeonpea: origin, history, evolution and taxonomy. In: Nene YL, Hall SD, Sheila VK (eds) The pigeonpea. CAB International, Wallingford, pp 44–86

    Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89. https://doi.org/10.1038/nbt.2022

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89. https://doi.org/10.1038/nbt.2022

    Article  CAS  Google Scholar 

  • Varshney RK et al (2013) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome-Us 6. https://doi.org/10.3835/plantgenome2013.07.0022

  • Varshney RK, Saxena RK, Jackson SA (2017a) In: Varshney RK, Saxena RK, Jackson SA (eds) The pigeonpea genome. Springer International Publishing AG, Cham, pp 41–54. https://doi.org/10.1007/978-3-319-63797-6-1

    Chapter  Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD et al (2017b) Whole-genome re-sequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088. https://doi.org/10.1038/ng.3872

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Saxena RK, Upadhaya HD, Khan AW et al (2017c) Whole–genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49(7):1082–1088. https://doi.org/10.1038/ng.3872

    Article  CAS  PubMed  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:13–66

    Google Scholar 

  • Waheed A, Hafiz IA, Qadir G, Ghulam Murtaza G, Mahmood T, Ashraf M (2006) Effect of salinity on germination, growth, yield, ionic balance and solute composition of pigeonpea [Cajanus cajan (L.) Millsp.]. Pak J Bot 38:1103–1117

    Google Scholar 

  • Wallis ES, Byth DE, Saxena KB (1981) Flowering responses of thirty-seven early maturing lines of pigeonpea. In: Proceeding International Work- shop on Pigeonpeas. International Crops Research Institute for the Semi-arid Tropics, Patancheru, vol 2, pp 143–150

    Google Scholar 

  • Wanjari KB, Patil AN, Manapure P, Manjaya JG, Manish P (2001) Cytoplasmic male-sterility in pigeonpea with cytoplasm from Cajanus volubilis. Annu Plant Physiol 13:170–174

    Google Scholar 

  • Yadav P, Saxena KB, Hingane A, Kumar C, Kandalkar VS, Varshney RK, Saxena RK (2019) An “axiom Cajanus SNP Array” based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genomics 20:235. https://doi.org/10.1186/s12864-019-5595-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvjeet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. et al. (2020). Updates of Pigeonpea Breeding and Genomics for Yield Improvement in India. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_4

Download citation

Publish with us

Policies and ethics