Skip to main content

SRC Signaling in Cancer and Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1270))

Abstract

Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  Google Scholar 

  2. Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23(48):7918–7927

    Article  CAS  Google Scholar 

  3. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23(48):7906–7909

    Article  CAS  Google Scholar 

  4. Ishizawar R, Parsons SJ (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6:209–214

    Article  CAS  Google Scholar 

  5. Kumar A, Jaggi AS, Singh N (2015) Pharmacology of Src family kinases and therapeutic implications of their modulators. Fundam Clin Pharmacol 29(2):115–130

    Article  CAS  Google Scholar 

  6. Martin GS (2001) The hunting of the Src. Nat Rev Mol Cell Biol 2:467–475

    Article  CAS  Google Scholar 

  7. Stehelin D, Varmus HE, Bishop JM et al (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  CAS  Google Scholar 

  8. Rous PA (1911) Sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411

    Article  CAS  Google Scholar 

  9. Czernilofsky AP, Levinson AD, Varmus HE et al (1983) Corrections to the nucleotide sequence of the src gene of Rous sarcoma virus. Nature 301:736–738

    Article  CAS  Google Scholar 

  10. Takeya T, Hanafusa H (1982) DNA sequence of the viral and cellular src gene of chickens. II. Comparison of the src genes of two strains of avian sarcoma virus and of the cellular homolog. J Virol 44:12–18

    Article  CAS  Google Scholar 

  11. Yeatman TJ (2004) A renaissance for Src. Nat Rev Cancer 4:470–480

    Article  CAS  Google Scholar 

  12. Collett MS, Purchio AF, Erikson RL (1980) Avian sarcoma virus-transforming protein, pp60(src) shows protein kinase activity specific for tyrosine. Nature 285(5761):167–169

    Article  CAS  Google Scholar 

  13. Irby RB, Yeatman T (2000) Role of Src expression and activation in human cancer. Oncogene 19(49):5636–5642

    Article  CAS  Google Scholar 

  14. Biscardi JS, Ishizawar RC, Silva CM et al (2000) Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2:203–210

    Article  CAS  Google Scholar 

  15. Puls LN, Eadens M, Messersmith W (2011) Current status of SRC inhibitors in solid tumor malignancies. Oncologist 16:566–578

    Article  CAS  Google Scholar 

  16. Roskoski R Jr (2015) Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 94:9–25

    Article  CAS  Google Scholar 

  17. Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14(7):667–678

    Article  CAS  Google Scholar 

  18. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    Google Scholar 

  19. Resh MD (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37:217–232

    Article  CAS  Google Scholar 

  20. Patwardhan P, Resh MD (2010) Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 30(17):4094–4107

    Article  CAS  Google Scholar 

  21. Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 2006:re14

    Article  Google Scholar 

  22. Gaffarogullari EC, Masterson LR, Metcalfe EE et al (2011) A myristoyl/phosphoserine switch controls cAMP-dependent protein kinase association to membranes. J Mol Biol 411:823–836

    Article  CAS  Google Scholar 

  23. Hantschel O, Nagar B, Guettler S et al (2003) A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112:845–857

    Article  CAS  Google Scholar 

  24. Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223(1):14–26

    CAS  Google Scholar 

  25. Moroco JA, Craigo JK, Iacob RE et al (2014) Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. PLoS One 9(8):e105629

    Article  CAS  Google Scholar 

  26. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  CAS  Google Scholar 

  27. Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5(4):317–328

    Article  CAS  Google Scholar 

  28. Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331:1–14

    Article  CAS  Google Scholar 

  29. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77:1311–1315

    Article  CAS  Google Scholar 

  30. Cooper JA, Howell B (1993) The when and how of Src regulation. Cell 73:1051–1054

    Article  CAS  Google Scholar 

  31. Okada M (2012) Regulation of the SRC family kinases by Csk. Int J Biol Sci 8(10):1385–1397

    Article  CAS  Google Scholar 

  32. Amata I, Maffei M, Pons M (2014) Phosphorylation of unique domains of Src family kinases. Front Genet 5:181

    Article  CAS  Google Scholar 

  33. Bjorge JD, Jakymiw A, Fujita DJ (2000) Selected glimpses into the activation and function of Src kinase. Oncogene 9:5620–5635

    Article  CAS  Google Scholar 

  34. Masaki T, Okada M, Tokuda M et al (1999) Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma. Hepatology 2:379–384

    Article  Google Scholar 

  35. Nakagawa TS, Tanaka H, Suzuki H et al (2000) Overexpression of the csk gene suppresses tumor metastasis in vivo. Int J Cancer 88(3):384–391

    Article  CAS  Google Scholar 

  36. Ingley E (2008) Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta 1784:56–65

    Article  CAS  Google Scholar 

  37. Oneyama C, Hikita T, Enya K et al (2008) The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell 30(4):426–436

    Article  CAS  Google Scholar 

  38. Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602(2):114–130

    CAS  Google Scholar 

  39. Zheng XM, Resnick RJ, Shalloway D (2000) A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J 19:964–978

    Article  CAS  Google Scholar 

  40. Harder KW, Moller NPH, Peacock JW et al (1999) Protein-tyrosine phosphatase a regulates Src family kinases and alters cell-substratum adhesion. J Biol Chem 273(48):31890–31900

    Article  Google Scholar 

  41. Zhu S, Bjorge JD, Fujita DJ (2000) PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res 67:10129–10137

    Article  CAS  Google Scholar 

  42. Arias-Romero LE, Saha S, Villamar-Cruz O et al (2009) Activation of Src by protein tyrosine phosphatase 1B is required for ErbB2 transformation of human breast epithelial cells. Cancer Res 69:4582–4588

    Article  CAS  Google Scholar 

  43. Songyang Z, Shoelson SE, Chaudhuri M et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  CAS  Google Scholar 

  44. Harris KF, Shoji I, Cooper EM et al (1999) Ubiquitin-mediated degradation of active Src tyrosine kinase. Proc Natl Acad Sci U S A 96(24):13738–13743

    Article  CAS  Google Scholar 

  45. Kamei T, Machida K, Nimura Y et al (2000) C-Cbl protein in human cancer tissues is frequently tyrosine phosphorylated in a tumor-specific manner. Int J Oncol 17:335–339

    CAS  Google Scholar 

  46. Wang NM, Yeh KT, Tsai CH et al (2000) No evidence of correlation between mutation at codon 531 of src and the risk of colon cancer in Chinese. Cancer Lett 150:201–204

    Article  CAS  Google Scholar 

  47. Sen B, Johnson FM (2011) Regulation of SRC family kinases in human cancers. J Signal Transduct 2011:865819

    Article  CAS  Google Scholar 

  48. Irby RB, Mao W, Coppola D et al (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21(2):187–190

    Article  CAS  Google Scholar 

  49. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    Article  CAS  Google Scholar 

  50. Byeon SE, Yi Y-S, Oh J, Yoo BC, Hong S, Cho JY (2012) The role of Src kinase in macrophage-mediated inflammatory responses. Mediat Inflamm 2012:512926

    Article  Google Scholar 

  51. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  Google Scholar 

  52. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    Article  CAS  Google Scholar 

  53. Cozzo AJ, Fuller AM, Makowski L (2017) Contribution of adipose tissue to development of cancer. Compr Physiol 8(1):237–282

    Article  Google Scholar 

  54. Shiga K, Hara M, Takeyama H (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7(4):2443–2458

    Article  Google Scholar 

  55. Bromann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23(48):7957–7968

    Article  CAS  Google Scholar 

  56. Parkin A, Man J, Timpson P, Pajic M (2019) Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 286(18):3510–3539

    Article  CAS  Google Scholar 

  57. Patel A, Sabbineni H, Clarke A et al (2016) Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci 157:52–61

    Article  CAS  Google Scholar 

  58. Abram CL, Courtneidge SA (2000) Src family tyrosine kinases and growth factor signaling. Exp Cell Res 254:1–13

    Article  CAS  Google Scholar 

  59. Liu ST, Pham H, Pandol SJ et al (2014) Src as the link between inflammation and cancer. Front Physiol 4:416–416

    Article  Google Scholar 

  60. Heldin CH, Lennartsson J, Westermark B (2018) Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 283(1):16–44

    Article  CAS  Google Scholar 

  61. Vera C, Tapia V, Vega M et al (2014) Role of nerve growth factor and its TRKA receptor in normal ovarian and epithelial ovarian cancer angiogenesis. J Ovarian Res 7:82

    Article  CAS  Google Scholar 

  62. Wang Z, Ahmad A, Li Y et al (2010) Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim Biophys Acta 1806:122–130

    CAS  Google Scholar 

  63. Amanchy R, Zhong J, Hong R et al (2009) Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol Oncol 3(5–6):439–450

    Article  CAS  Google Scholar 

  64. Farooqi AA, Siddik ZH (2015) Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct 33(5):257–265

    Article  CAS  Google Scholar 

  65. Gelderloos JA, Rosenkranz S, Bazenet C et al (1998) A role for Src in signal relay by the platelet-derived growth factor alpha receptor. J Biol Chem 273(10):5908–5915

    Article  CAS  Google Scholar 

  66. Chen SY, Lin JS, Lin HC et al (2015) Dependence of fibroblast infiltration in tumor stroma on type IV collagen-initiated integrin signal through induction of platelet-derived growth factor. Biochim Biophys Acta 1853(5):929–939

    Article  CAS  Google Scholar 

  67. Barone MV, Courtneidge SA (1995) Nature (London) 378:509–512

    Article  CAS  Google Scholar 

  68. Roche S, Koegl M, Barone MV (1995) DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Mol Cell Biol 15:1102–1109

    Article  CAS  Google Scholar 

  69. Bowman T, Broome MA, Sinibaldi D et al (2001) Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 98(13):7319–7324

    Article  CAS  Google Scholar 

  70. Ling X, Arlinghaus RB (2005) Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res 65:2532–2536

    Article  CAS  Google Scholar 

  71. Frame MC (2004) Newest findings on the oldest oncogene; how activated Src does it. J Cell Sci 117(Pt 7):989–998

    Article  CAS  Google Scholar 

  72. Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp Cell Res 284:99–110

    Article  CAS  Google Scholar 

  73. Belsches-Jablonski AP, Biscardi JS, Peavy DR (2001) Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20:1465–1475

    Article  CAS  Google Scholar 

  74. Irwin ME, Bohin N, Boerner JL (2011) Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther 12(8):718–726

    Article  CAS  Google Scholar 

  75. Boerner JL, Demory ML, Silva C et al (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Biol Cell 24:7059–7071

    Article  CAS  Google Scholar 

  76. Kloth MT, Laughlin KK, Biscardi JS et al (2003) STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J Biol Chem 278:1671–1679

    Article  CAS  Google Scholar 

  77. Prenzel N, Zwick E, Leserer M et al (2000) Tyrosine kinase signalling in breast cancer. Epidermal growth factor receptor: convergence point for signal integration and diversification. Breast Cancer Res 2:184–190

    Article  CAS  Google Scholar 

  78. Wu W, Graves LM, Gill GN et al (2002) Src-dependent phosphorylation of the epidermal growth factor receptor on tyrosine 845 is required for zinc-induced Ras activation. J Biol Chem 277:24252–24257

    Article  CAS  Google Scholar 

  79. Demers MJ, Thibodeau S, Noe¨l D et al (2009) Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem 107:639–654

    Article  CAS  Google Scholar 

  80. Fincham VJ, Brunton VG, Frame MC (2000) The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase. Mol Cell Biol 20:6518–6536

    Article  CAS  Google Scholar 

  81. Lu Y, YuQ LJH et al (2003) Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem 278:40057–40066

    Article  CAS  Google Scholar 

  82. Beadnell TC, Nassar KW, Rose MM et al (2018) Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis 7(2):23

    Article  CAS  Google Scholar 

  83. Berrier AL, Yamada KM (2007) Cell-matrix adhesion. J Cell Physiol 213:565–573

    Article  CAS  Google Scholar 

  84. Huveneers S, Danen EH (2009) Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 122:1059–1069

    Article  CAS  Google Scholar 

  85. Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946

    Article  CAS  Google Scholar 

  86. Horwitz AR, Parsons JT (1999) Cell migration-movin’ on. Science 286:1102–1103

    Article  CAS  Google Scholar 

  87. Longmate W, DiPersio CM (2017) Beyond adhesion: emerging roles for integrins in control of the tumor microenvironment. F1000Res 6:1612

    Article  CAS  Google Scholar 

  88. Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22(4):337–358

    Article  CAS  Google Scholar 

  89. Frame MC, Fincham VJ, Carragher N et al (2002) v-Src’s hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3:233–245

    Article  CAS  Google Scholar 

  90. Huveneers S, Arslan S, van de Water B et al (2008) Integrins uncouple Src-induced morphological and oncogenic transformation. J Biol Chem 83:13243–13251

    Article  CAS  Google Scholar 

  91. Matsuoka T, Yashiro M, Nishioka N et al (2012) PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer 106(9):1535–1542

    Article  CAS  Google Scholar 

  92. Yip SC, El-Sibai M, Coniglio SJ et al (2007) The distinct roles of Ras and Rac in PI 3-kinase- dependent protrusion during EGF-stimulated cell migration. J Cell Sci 120:3138–3146

    Article  CAS  Google Scholar 

  93. Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416

    Article  CAS  Google Scholar 

  94. McLean GW, Carragher NO, Avizienyte E et al (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5:505–515

    Article  CAS  Google Scholar 

  95. Cary LA, Klinghoffer RA, Sachsenmaier C et al (2002) SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Mol Cell Biol 22(8):2427–2440

    Article  CAS  Google Scholar 

  96. Parsons JT, Martin KH, Slack JK et al (2000) Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19:5606–5613

    Article  CAS  Google Scholar 

  97. Burnham MR, Bruce-Staskal PJ, Harte MT et al (2000) Regulation of c-SRC activity and function by the adapter protein CAS. Mol Cell Biol 20(16):5865–5878

    Article  CAS  Google Scholar 

  98. Hsia DA, Mitra SK, Hauck CR et al (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767

    Article  CAS  Google Scholar 

  99. Kanteti R, Batra SK, Lennon FE et al (2016) FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 7(21):31586–31601

    Article  Google Scholar 

  100. Turner CE, Glenney JR, Burridge K (1990) Paxillin: a new vinculin-binding protein present in focal adhesions. J Cell Biol 111(3):1059–1068

    Article  CAS  Google Scholar 

  101. Van Slambrouck S, Jenkins AR, Romero AE et al (2009) Reorganization of the integrin alpha2 subunit controls cell adhesion and cancer cell invasion in prostate cancer. Int J Oncol 34:1717–1726

    Google Scholar 

  102. Zaidel-Bar R, Milo R, Kam Z et al (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148

    Article  CAS  Google Scholar 

  103. Tomar A, Lim ST, Lim Y et al (2009) A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 122(11):1852–1862

    Article  CAS  Google Scholar 

  104. Tsubouchi A, Sakakura J, Yagi R et al (2002) Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J Cell Biol 159:673–683

    Article  CAS  Google Scholar 

  105. Meng XN, Jin Y, Yu Y et al (2009) Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer 101:327–334

    Article  CAS  Google Scholar 

  106. Carlucci A, Gedressi C, Lignitto L et al (2008) Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem 283:10919–10929

    Article  CAS  Google Scholar 

  107. Lee JH, Choi SI, Kim RK et al (2018) Tescalcin/c-Src/IGF1Rβ-mediated STAT3 activation enhances cancer stemness and radioresistant properties through ALDH1. Sci Rep 8(1):10711–10711

    Article  CAS  Google Scholar 

  108. Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160

    Article  CAS  Google Scholar 

  109. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318

    Article  CAS  Google Scholar 

  110. Lee CW, Lin CC, Lin WN et al (2007) TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292(3):L799–L812

    Article  CAS  Google Scholar 

  111. Hansen RK, Parra I, Hilsenbeck SG et al (2001) Hsp27-induced MMP-9 expression is influenced by the Src tyrosine protein kinase yes. Biochem Biophys Res Commun 282(1):186–193

    Article  CAS  Google Scholar 

  112. Vincenti MP, Schroen DJ, Coon CI et al (1998) v-src activation of the collagenase-1 (matrix metalloproteinase-1) promoter through PEA3 and STAT: requirement of extracellular signal-regulated kinases and inhibition by retinoic acid receptors. Mol Carcinog 21(3):194–204

    Article  CAS  Google Scholar 

  113. Kuo L, Chang HC, Leu TH et al (2006) Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol 207(3):729–734

    Article  CAS  Google Scholar 

  114. Wu X, Gan B, Yoo Y et al (2005) FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 9:185–196

    Article  CAS  Google Scholar 

  115. Soki FN, Park SI, McCauley LK (2012) The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol 8(7):803–817

    Article  CAS  Google Scholar 

  116. Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465

    Article  CAS  Google Scholar 

  117. Avizienyte E, Fincham VJ, Brunton VG et al (2004) Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 15:2794–2803

    Article  CAS  Google Scholar 

  118. Palacios F, Tushir JS, Fujita Y et al (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25:389–402

    Article  CAS  Google Scholar 

  119. Lawler K, O’Sullivan G, Long A et al (2009) Shear stress induces internalization of E- cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 100:1082–1087

    Article  CAS  Google Scholar 

  120. Tsang JL, Jia SH, Parodo J (2016) Tyrosine phosphorylation of Caspase-8 abrogates its apoptotic activity and promotes activation of c-Src. PLoS One 11(4):e 0153946

    Article  CAS  Google Scholar 

  121. Frisch SM (2008) Caspase-8: Fly or die. Cancer Res 68:4491–4493

    Article  CAS  Google Scholar 

  122. Petrova V, Annicchiarico-Petruzzelli M, Melino G et al (2018) The hypoxic tumour microenvironment. Oncogenesis 7(1):10

    Article  CAS  Google Scholar 

  123. Dai Y, Siemann D (2019) c-Src is required for hypoxia-induced metastasis-associated functions in prostate cancer cells. Onco Targets Ther 12:3519–3529

    Article  CAS  Google Scholar 

  124. Mukhopadhyay D, Tsiokas L, Zhou XM et al (1995) Nature 375:577–581

    Article  CAS  Google Scholar 

  125. Sgroi DC (2009) Breast cancer SRC activity: bad to the bone. Cancer Cell 16:1–2

    Article  CAS  Google Scholar 

  126. Gallick GE, Johnson FM (2010) Src family kinase inhibitors in cancer therapy. In: Georgiev B, Markovski S (eds) Serpins and protein kinase inhibitors: novel functions, structural features and molecular Mecha- nisms. Nova Science Publishers, Hauppauge

    Google Scholar 

  127. Zhang S, Yu D (2012) Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 33(3):122–128

    Article  CAS  Google Scholar 

  128. Araujo J, Logothetis C (2010) Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 36:492–500

    Article  CAS  Google Scholar 

  129. Ahn JS, Lee KH, Sun JM et al (2013) A randomized, phase II study of vandetanib maintenance for advanced or metastatic non-small- cell lung cancer following first-line platinum-doublet chemotherapy. Lung Cancer 82:455–460

    Article  Google Scholar 

  130. Gridelli C, Novello S, Zilembo N et al (2014) Phase II randomized study of vandetanib plus gemcitabine or gemcitabine plus placebo as first-line treatment of advanced non-small-cell lung cancer in elderly patients. J Thorac Oncol 9:733–737

    Article  CAS  Google Scholar 

  131. Sim MW, Cohen MS (2014) The discovery and development of vandetanib for the treatment of thyroid cancer. Expert Opin Drug Discov 9:105–114

    Article  CAS  Google Scholar 

  132. Daud AI, Krishnamurthi SS, Saleh MN et al (2012) Phase I study of bosutinib, a src/abl tyrosine kinase inhibitor, administered to patients with advanced solid tumors. Clin Cancer Res 18:1092–1100

    Article  CAS  Google Scholar 

  133. Moy B, Neven P, Lebrun F et al (2014) Bosutinib in combination with the aromatase inhibitor letrozole: a phase II trial in postmenopausal women evaluating first-line endocrine therapy in locally advanced or metastatic hormone receptor-positive/HER2-negative breast cancer. Oncologist 19:348–349

    Article  Google Scholar 

  134. Cortes JE, Kim DW, Pinilla-Ibarz J et al (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369:1783–1796

    Article  CAS  Google Scholar 

  135. Goldman A, Majumder B, Dhawan A et al (2015) Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun 6:6139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Ozpolat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caner, A., Asik, E., Ozpolat, B. (2021). SRC Signaling in Cancer and Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1270. Springer, Cham. https://doi.org/10.1007/978-3-030-47189-7_4

Download citation

Publish with us

Policies and ethics