Skip to main content

Membrane Targeting of Lipid Modified Signal Transduction Proteins

  • Chapter
Membrane Dynamics and Domains

Part of the book series: Subcellular Biochemistry ((SCBI,volume 37))

Abstract

Covalent attachment of lipophilic moieties to proteins influences interaction with membranes and membrane microdomains, as well as signal transduction. The most common forms of fatty acylation include modification of the N-terminal glycine of proteins by N-myristoylation and/or attachment of palmitate to internal cysteine residues. Protein prenylation involves attachment of farnesyl or geranylgeranyl moieties via thio-ether linkage to cysteine residues at or near the C-terminus. Attachment of each of these lipophilic groups is catalyzed by a distinct enzyme or set of enzymes: N-myristoyl transferase for N-myristoylation, palmitoyl acyl transferases for palmitoylation, and farnesyl or geranylgeranyl transferases for prenylation. The distinct nature of the lipid modification determines the strength of membrane interaction of the modified protein as well as the specificity of membrane targeting. Clusters of basic residues can also synergize with the lipophilic group to promote membrane binding and targeting. The final destination of the modified protein is influenced by multiple factors, including the localization of the modifying enzymes, protein/protein interactions, and the lipid composition of the acceptor membrane. In particular, much interest has been focused on the ability of fatty acylated proteins to preferentially partition into membrane rafts, subdomains of the plasma membrane that are enriched in cholesterol and glycosphingolipids. Lipid raft localization is necessary for efficient signal transduction in a wide variety of systems, including signaling by T and B cell receptors, Ras, and growth factor receptors. However, certain membrane subdomains, such as caveolae, can serve as reservoirs for inactive signaling proteins. Heterogeneity in the types of membrane subdomains, as well as in the types of lipophilic groups that are attached to proteins, provide an additional level of complexity in the regulation of signaling by membrane bound proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alland, L., Peseckis, S.M., Atherton, R.E., Berthiaume, L., and Resh, M.D. (1994). Dual Myristylation and Palmitylation of Src Family Member p59fyn Affects Subcellular Localization. J. Biol. Chem. 269, 16701–16705.

    PubMed  CAS  Google Scholar 

  • Anderson, R.G. and Jacobson, K. (2002). A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R.G.W. (1998). The Caveolae Membrane System. Annu. Rev. Biochem. 67, 199–225.

    Article  PubMed  CAS  Google Scholar 

  • Apolloni, A., Prior, I.A., Lindsay, M., Parton, R.G., and Hancock, J.F. (2000). H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 20, 2475–87.

    Article  PubMed  CAS  Google Scholar 

  • Arcaro, A., Grégoire, C., Boucheron, N., Palmer, E., Malissen, B., and Luescher, I.F. (2000). Essential Role of CD8 Palmitoylation in CD8 Coreceptor Function. J. Immunol. 165, 2068–2076.

    PubMed  CAS  Google Scholar 

  • Bano, M.D., Jackson, D.S., and Magee, A.I. (1998). Pseudo-enzymatic S-acylation of a myristoylated Yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo. Biochem. J. 330, 723–731.

    PubMed  CAS  Google Scholar 

  • Berthiaume, L., Peseckis, S.M., and Resh, M.D. (1995). Synthesis and use of lodo-fatty acid analogs. Meth. Enzymol. 250, 454–466.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A. and London, E. (1998). Functions of Lipid Rafts in Biological Membranes. Annu rev. Cell Dev. Biol. 14, 111–136.

    CAS  Google Scholar 

  • Brown, D.A. and London, E. (2000). Structure and function of Sphingolipid and Cholesterol rich Membrane Rafts. J. Biol. Chem. 275, 17221–17224.

    Article  PubMed  CAS  Google Scholar 

  • Casey, P.J., Thissen, J.A., and Moomaw, J.F. (1991). Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc. Natl. Acad. Sci. USA 88, 8631–8635.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X. and Resh, M.D. (2002). Cholesterol Depletion from the Plasma Membrane Triggers Ligand-independent Activation of the Epidermal Growth Factor Receptor. J. Biol. Chem. 277, 49631–49637.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, P.C., Dykstra, M.L., Mitchell, R.N., and Pierce, S.K. (1999). A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560.

    Article  PubMed  CAS  Google Scholar 

  • Choy, E., Chiu, V.K., Silletti, J., Feoktistov, M., Morimoto, T., Michaelson, D., Ivanov, I.E., and Philips, M.R. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Degtyarev, M.Y., Spiegel, A.M., and Jones, T.L.Z. (1994). Palmitoylation of a G Protein Subunit Requires Membrane Localization Not Myristoylation. J. Biol. Chem. 269, 30898–30903.

    PubMed  CAS  Google Scholar 

  • Duncan, J.A. and Gilman, A.G. (1996). Autoacylation of G Protein a Subunits. J. Biol. Chem. 271, 23594–23600.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, J.A. and Gilman, A.G. (1998). A Cytoplasmic Acyl-Protein Thioesterase that Removes Palmitate from G Protein a Subunits and p21Ras. J. Biol. Chem. 273, 15830–15837.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy, J.T., Greentree, W.K., Manahan, C.L., and Linder, M.E. (1996). G-protein palmitoyltransferase activity is enriched in plasma membranes. J. Biol. Chem. 271, 7154–7159.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy, J.T., Schroeder, H., Leventis, R., Greentree, W.K., Knudsen, J.K., Silvius, J.R., and Linder, M.E. (2000). Differential effects of acyl-CoA binding protein on enzymatic and non-enzymatic thioacylation of protein and peptide substrates. Biochim. Biophys. Acta 1485, 185–198.

    Article  PubMed  CAS  Google Scholar 

  • El-Husseini, A.-D., Schnell, E., Dakoji, S., Sweeney, N., Zhou, Q., Prange, O., Gauthier-Campbell, C., Aguilera-Moreno, A., Nicoll, R.A., and Bredt, D.S. (2002). Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108, 849–863.

    Article  CAS  Google Scholar 

  • Evanko, D.S., Thiyagarajan, M.M., Siderovski, D.P., and Wedegaertner, P.B. (2001). Gßy isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Gas and Gaq. J. Biol. Chem. 276, 23945–23953.

    Article  PubMed  CAS  Google Scholar 

  • Feron, O., Michel, J.B., Sase, K., and Michel, T. (1998). Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions. Biochemistry 37, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Fishburn, C.S., Pollitt, S.K., and Bourne, H.R. (2000). Localization of a peripheral membrane

    Google Scholar 

  • protein: Gbetagannna targets Galpha(Z). Proc Natl Acad. Sci. USA 97, 1085–1090. Fukada, Y. (1995). Prenylation and Carboxylmethylation of G-Protein y Subunit. Meth. Enzymol. 250, 91–105.

    Google Scholar 

  • Galbiati, E, Volonte, D., Meani, D., Milligan, G., Lublin, D.M., Lisanti, M.P., and Parenti, M. (1999). The Dually Acylated NH2-terminal Domain of Gilalpha Is Sufficient to Target a Green Fluorescent Protein Reporter to Caveolin-enriched Plasma Membrane Domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated G-protein a subunits in vivo. J. Biol. Chem. 274, 5843–5850.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J.R., Cadwallader, K., Paterson, H., and Marshall, C.J. (1991). A CAAX or a CAAL motif and a Second Signal are Sufficient for Plasma Membrane Targeting of Ras Proteins. EMBO J. 10, 4033–4039.

    CAS  Google Scholar 

  • Higuchi, M., Izumi, K.M., and Kieff, E. (2001). Epstein-Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc. Natl Acad. Sci. USA 98, 4675–4680.

    Article  PubMed  CAS  Google Scholar 

  • Janes, P.W., Ley, S.C., and Magee, A.I. (1999). Aggregation of Lipid Rafts Accompanies Signaling Via the T Cell Antigen Receptor. J. Cell Biol. 147, 447–461.

    Article  PubMed  CAS  Google Scholar 

  • Kabouridis, P.S., Magee, A.I., and Ley, S.C. (1997). S-acylation of Lek protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983–4998.

    Article  CAS  Google Scholar 

  • Leventis, R., Juel, G., Knudsen, J.K., and Silvius, J.R. (1997). Acyl-CoA binding proteins inhibit the nonenzymic S-acylation of cysteinyl-containing peptide sequences by long-chain acyl-CoAs. Biochemistry 36, 5546–5553.

    Article  PubMed  CAS  Google Scholar 

  • Liang, X., Lu, Y., Neubert, T.A., and Resh, M.D. (2002). Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J. Biol. Chem. 277, 33032–33040.

    Article  PubMed  CAS  Google Scholar 

  • Liang, X., Nazarian, A., Erdjument-Bromage, H., Bornmann, W, Tempst, P, and Resh, M.D. (2001). Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J. Biol. Chem. 276, 30987–30994.

    Article  PubMed  CAS  Google Scholar 

  • Lindwasser, O.W. and Resh, M.D. (2001). Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75, 7913–7924.

    Article  PubMed  CAS  Google Scholar 

  • Lindwasser, O.W. and Resh, M.D. (2002). Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. Proc. Natl Acad. Sci. USA 99, 13037–13042.

    Article  PubMed  CAS  Google Scholar 

  • Lobo, S., Greentree, W.K., Linder, M.E., and Deschenes, R.J. (2002). Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273.

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F. (2002a). N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541–557.

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F. (2002b). N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J. Mol. Biol. 317, 523–540.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, J.B. and Berthiaume, L.G. (1999). Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol. Biol. Cell 10, 3771–3786.

    PubMed  CAS  Google Scholar 

  • Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G., and Brown, D.A. (1999). Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910–3917.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, D., Ahearn, I., Bergo, M., Young, S., and Philips, M. (2002). Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi. Mol. Biol. Cell 13, 3294–3302.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, D., Silletti, J., Murphy, G., D’Eustachio, P., Rush, M., and Philips, M.R. (2001). Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell. Biol. 152, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, S., Brown, D.A., and Linder, M.E. (2000). Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198.

    Article  PubMed  CAS  Google Scholar 

  • Montixi, C., Langlet, C., Bernard, A.-M., Thimonier, J., Dubois, C., Wurbel, M.-A., Chauvin, J.-P., Pierres, M., and He, H.-T. (1998). Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348.

    Article  CAS  Google Scholar 

  • Morales, J., Fishburn, C.S., Wilson, ET., and Bourne, H.R. (1998). Plasma Membrane Localization of Gaz Requires Two Signals. Mol. Biol. Cell 9, 1–14.

    PubMed  CAS  Google Scholar 

  • Mumby, S.M. (1997). Reversible palmitoylation of signaling proteins. Curr. Opin. Cell Biol. 9, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Murray, D., Ben-Tal, N., Honig, B., and McLaughlin, S. (1997). Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure 5, 985–989.

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Lerida, I., Alvarez-Barrientos, A., Gavilanes, F., and Rodriguez-Crespo, I. (2002). Distance-dependent cellular palmitoylation of de-novo-designed sequences and their translocation to plasma membrane subdomains. J. Cell Sci. 115, 3119–3130.

    PubMed  CAS  Google Scholar 

  • Okamoto, T., Schlegel, A., Schereer, P.E., and Lisanti, M.P. (1998). Caveolins, a Family of Scaffolding Proteins for Organizing “Preassembled Signaling Complexes” at the Plasma Membrane. J. Biol. Chem. 273, 5419–5422.

    Article  PubMed  CAS  Google Scholar 

  • Ono, A. and Freed, E.O. (2001). Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 98, 13925–13930.

    Article  PubMed  CAS  Google Scholar 

  • Peitzsch, R.M. and McLaughlin, S. (1993). Binding of Acylated Peptides and Fatty Acids to Phospholipid Vesicles: Pertinance to Myristoylated Proteins. Biochemistry 32, 10436–10443.

    Article  PubMed  CAS  Google Scholar 

  • Pepinsky, R.B., Zeng, C., Wen, D., Rayhorn, R, and Baker, D.P.e.a. (1998). Identification of a Palmitic Acid modified form of Human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045.

    Article  PubMed  CAS  Google Scholar 

  • Peseckis, S.M., Deichaite, I., and Resh, M.D. (1993). Iodinated Fatty Acids as Probes for Myristate Processing and Function. J. Biol. Chem. 268, 5107–5114.

    PubMed  CAS  Google Scholar 

  • Pierce, S.K. (2002). Lipid rafts and B-cell activation. Nat. Rev. Immunol. 2, 96–105.

    Article  PubMed  CAS  Google Scholar 

  • Pike, L.J. and Casey, L. (2002). Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41, 10315–10322.

    Article  PubMed  CAS  Google Scholar 

  • Porter, JA, Young, K.E, and Beachy, P.A. (1996). Cholesterol Modification of Hedgehog Signaling Proteins in Animal Development. Science 274, 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Prior, I.A. and Hancock, J.F. (2001). Compartmentalization of Ras Proteins. J. Cell Sci. 114, 1603–1608.

    PubMed  CAS  Google Scholar 

  • Prior, I.A., Harding, A., Yan, J., Sluimer, J., Parton, R.G., and Hancock, J.F. (2001). GTPdependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell Biol. 3, 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Resh, M.D. (1994). Myristylation and Palmitylation of Src Family Members: The Fats of the Matter. Cell 76, 411–413.

    Article  PubMed  CAS  Google Scholar 

  • Resh, M.D. (1999). Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, S.M., Quintrell, N.A., and Bishop, J.M. (1995). Myristoylation and Differential Palmitoylation of the HCK Protein Tyrosine Kinases Govern Their Attachment to Membranes and Association with Caveolae. Mol. Cell. Biol. 15, 3507–3515.

    PubMed  CAS  Google Scholar 

  • Robinson, L.J., Busconi, L., and Michel, T. (1995). Agonist-modulated Palmitoylation of Endothelial Nitric Oxide Synthase. J. Biol. Chem. 270, 995–998.

    Article  PubMed  CAS  Google Scholar 

  • Roth, A.R., Feng, Y., Chen, L., and Davis, N.G. (2002). The yeast DHC cysteine-rich domain protein Akrlp is a palmitoyl transferase. J. Cell Biol. 159, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Rousso, I., Mixon, M.G., Chen, B.K., and Kim, P.S. (2000). Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc. Natl. Acad. Sci. USA 97, 13523–13525.

    Article  PubMed  CAS  Google Scholar 

  • Roy, M.O., Leventis, R., and Silvius, J.R. (2000). Mutational and biochemical analysis of plasma membrane targeting mediated by the farnesylated, polybasic carboxy terminus of K-ras4B. Biochemistry 39, 8298–8307.

    Article  PubMed  CAS  Google Scholar 

  • Schade, A.E. and Levine, A.D. (2002). Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J. Immunol. 168, 2233–9.

    PubMed  CAS  Google Scholar 

  • Scheiffele, P., Roth, M.G., and Simons, K. (1997). Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508.

    Article  CAS  Google Scholar 

  • Schroeder, H., Leventis, R., Shahinian, S., Walton, P.A., and Silvius, J.R. (1996). Lipid-modified, Cysteinyl-containing Peptides of Diverse Structure are Efficiently S-Acylated at the Plasma Membrane of Mammalian Cells. J. Cell Biol. 134, 647–660.

    Article  PubMed  CAS  Google Scholar 

  • Shahinian, S. and Silvius, J.R. (1995). Doubly lipid-modified protein sequence motifs exhibit long lived anchorage to lipid bilayer membranes. Biochemistry 34, 3813–3822.

    Article  PubMed  CAS  Google Scholar 

  • Shenoy-Scaria, A.M., Dietzen, D.J., Kwong, J., Link, D.C., and Lublin, D.M. (1994). Cysteine-3 of Src Family Protein Tyrosine Kinases Determines Palmitoylation and Localization in Caveolae. J. Cell Biol. 126, 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J.R. and L’Heureux, E. (1994). Fluorometric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33, 3014–3022.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K. and Ehehalt, R. (2002). Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603.

    PubMed  CAS  Google Scholar 

  • Simons, K. and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Sowa, G., Pypaert, M., and Sessa, W.C. (2001). Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. USA 98, 14072–14077.

    Article  PubMed  CAS  Google Scholar 

  • Sproul, T.W., Malapati, S., Kim, J., and Pierce, S.K. (2000). Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023.

    PubMed  CAS  Google Scholar 

  • Tsui-Pierchala, B.A., Encinas, M., Milbrandt, J., and Johnson, E.M. Jr (2002). Lipid rafts in neuronal signaling and function. Trends Neurosci. 25, 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Duyl, B.Y., Rijkers, D.T., de Kruijff, B., and Killian, J.A. (2002). Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane alpha-helical peptides with detergent-resistant membranes. FEBS Lett 523, 79–84.

    Article  PubMed  Google Scholar 

  • Hof, W. and Resh, M.D. (1997). Rapid plasma membrane anchoring of newly synthesized p59fyn: selective requirment for NH2-terminal myristoylation and palmitoylation at cysteine-3. J. Cell Biol. 136, 1023–1035.

    Article  Google Scholar 

  • Hof, W. and Resh, M.D. (1999). Dual fatty acylation of p59fyn is required for association with the T-cell receptor zeta chain through phosphotyrosine-SH2 interactions. J. Cell Biol. 145, 377–389.

    Article  CAS  Google Scholar 

  • Wang, J., Arbuzova, A., Hangyas-Mihalyne, G., and McLaughlin, S. (2001). The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 276, 5012–5019.

    Article  PubMed  CAS  Google Scholar 

  • Webb, Y, Hermida-Matsumoto, L., and Resh, M.D. (2000). Inhibition of protein palmitoylation, raft localization and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Wolven, A., Okamura, H., Rosenblatt, Y, and Resh, M.D. (1997). Palmitoylation of p59fyn is Reversible and Sufficient for Plasma Membrane Association. Mol. Biol. Cell 8, 1159–1173.

    PubMed  CAS  Google Scholar 

  • Xavier, R., Brennan, T., Li, Q., McCormack, C., and Seed, B. (1998). Membrane Compartmentation is Required for Efficient T Cell Activation. Immunity 8, 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Claas, C., Kraeft, S.K., Chen, L.B., Wang, Z., Kreidberg, J.A., and Hemler, M.E. (2002). Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell. 13, 767–81.

    Google Scholar 

  • Yeh, D. C., Duncan, J. A., Yamashita, S., and Michel, T. (1999). Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca(2 +)- calmodulin. J. Biol. Chem. 274, 33148–33154.

    Article  PubMed  CAS  Google Scholar 

  • Zacharias, D.A., Violin, J.D., Newton, A.C., and Tsien, R.Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Seabra, M.C., and Deisenhofer, J. (2000). Crystal structure of Rab geranylgeranyltransferase at 2.0 A resolution. Structure 8, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W, Irvin, B.J., Trible, R.P., Abraham, R.T., and Samelson, L.E. (1999). Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol. 11, 943–950.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W, Trible, R.P., and Samelson, L.E. (1998). LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W, Parent, L.J., Wills, J.W., and Resh, M.D. (1994). Identification of a Membrane Binding Domain within the Amino-Terminal Region of Human Immunodeficiency Virus Type 1 Gag Protein Which Interacts with Acidic Phospholipids. J. Virol. 68, 2556–2569.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Resh, M.D. (2004). Membrane Targeting of Lipid Modified Signal Transduction Proteins. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics