Skip to main content

Phytoremediation of Contaminated Soils Using Trees

  • Chapter
  • First Online:
Cellular and Molecular Phytotoxicity of Heavy Metals

Abstract

Environmental contamination and exposure to toxicant material is an undeniable crucial problem all over the world. The unscientific utilization of nonbiodegradable materials in enterprises, research experiments, military, and agriculture and its dumping have created a major hazard for human society, plants, and animals. Similarly, exhaust from the vehicles, industrial effluents, and industrial smoke, all these are the sources of heavy metals (HMs) which eventually get absorbed in the environment. Therefore, HMs can amass in the body of organisms and will reside inside the body for a longer period of time and cause toxicity. Additionally, HMs can also accumulate in solid form as water sediment. With more prominent mass consciousness of the concept of polluted soils on human and animal well-being there has been expanding interest between mainstream researchers in the improvement of strategies to remediate and tidy up tainted locales. One of these is a low-cost phytoremediation by trees. It is one of the low-cost methods for reclamation of contaminated areas with no effect on soil quality. The potential of various tree species to accumulate HMs differs. Hence, various factors have been developed to determine the HM accumulation potential of several trees, like CBCI (Comprehensive Bioconcentration Index) and MAI (Metal Accumulation Index) other than TF (Translocation Factor), BCF (Bioconcentration Factor), and BF (Bioaccumulation Factor). In global prospects, research on phytoremediation has grabbed a lot of attention and work on it is being conducted in almost every continent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril GA, Wannaz ED, Mateos AC, Invernizzi R, Plá RR, Pignata ML (2014) Characterization of atmospheric emission sources of heavy metals and trace elements through a local-scale monitoring network using T. capillaris. Ecol Indic 40:153–161

    Article  CAS  Google Scholar 

  • Aghaalikhani A, Savuto E, Di Carlo A, Borello D (2017) Poplar from phytoremediation as a renewable energy source: gasification properties and pollution analysis. Energy Procedia 142:924–931

    Article  CAS  Google Scholar 

  • Ainza C, Trevors J, Saier M (2010) Environmental mercury rising. Water Air Soil Pollut 205(1):47–48

    Article  CAS  Google Scholar 

  • Alahabadi A, Hassan M, Miri M, Ahmadi E, Talebi P, Abaszadeh Z, Babai F (2017) A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 172:459–467

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Almaroai YA, Usman ARA, Ahmad M, Kim KR, Vithanage M, Ok YS (2013) Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environ Technol 34(6):747–755

    Article  CAS  PubMed  Google Scholar 

  • Amărioarei A, Ițcuș C, Păun M (2017) Phytoremediation research-how Romania is placed worldwide. Roman Biotechnol Lett 22(3):12651

    Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111(4):811–815

    Article  CAS  Google Scholar 

  • Asgari Lajayer B, Ghorbanpour M, Nikabadi S (2017a) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Article  CAS  PubMed  Google Scholar 

  • Asgari Lajayer H, Savaghebi G, Hadian J, Hatami M, Pezhmanmehr M (2017b) Comparison of copper and zinc effects on growth, micro- and macronutrients status and essential oil constituents in pennyroyal (Mentha pulegium L.). Braz J Bot 40:379–388

    Google Scholar 

  • Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484. https://doi.org/10.1007/s11356-019-04241-y

    Article  CAS  Google Scholar 

  • Awofolu OR (2005) A survey of trace metals in vegetation, soil and lower animal along some selected major roads in metropolitan city of Lagos. Environ Monit Assess 105(1–3):431–447

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11(1–4):41–49

    Article  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci Total Environ 454:598–603

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya T, Banerjee DK, Gopal B (2006) Heavy metal uptake by Scirpus littoralis Schrad. from fly ash dosed and metal spiked soils. Environ Monit Assess 121(1–3):363–380

    Article  CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Boquete MT, Aboal JR, Carballeira A, Fernández JA (2014) Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmos Environ 86:28–34

    Google Scholar 

  • Cao A, Carucci A, Lai T, La Colla P, Tamburini E (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43(4):200–206

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60(10):1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128(4):412–420

    CAS  PubMed  Google Scholar 

  • Degraeve N (1981) Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat Res/Rev Genet Toxicol 86(1):115–135

    Article  CAS  Google Scholar 

  • Duda-Chodak A, Blaszczyk U (2008) The impact of nickel on human health. J Elem 13(4):685–693

    Google Scholar 

  • Esringü A, Turan M (2012) The roles of diethylenetriamine pentaacetate (DTPA) and ethylenediamine disuccinate (EDDS) in remediation of selenium from contaminated soil by Brussels sprouts (Brassica oleracea var. gemmifera). Water Air Soil Pollut 223(1):351–362

    Article  CAS  Google Scholar 

  • Evangelou MWH, Daghan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57(3):207–213

    Article  CAS  PubMed  Google Scholar 

  • Forsberg LS, Kleja DB, Greger M, Ledin S (2009) Effects of sewage sludge on solution chemistry and plant uptake of Cu in sulphide mine tailings at different weathering stages. Appl Geochem 24(3):475–482

    Article  CAS  Google Scholar 

  • Gabos MB, Abreu CA, Coscione AR (2009) EDTA assisted phytoremediation of a Pb-contaminated soil: metal leaching and uptake by jack beans. Sci Agric 66(4):506–514

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Xia J, Luo C, Mao L, Zhou P, Shi W (2012) Effect of citric acid on phytoextraction and antioxidative defense in Solanum nigrum L. as a hyperaccumulator under Cd and Pb combined pollution. Environ Earth Sci 65(7):1923–1932

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Asian J Energ Environ 6(4):18–25

    Google Scholar 

  • Govindasamy C, Arulpriya M, Ruban P, Jenifer FL, Ilayaraja A (2011) Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Int J Environ Sci 2(1):145–150

    CAS  Google Scholar 

  • Gulati K, Banerjee B, Lall SB, Ray A (2010) Effects of diesel exhaust, heavy metals and pesticides on various organ systems: possible mechanisms and strategies for prevention and treatment. Indian J Exp Biol 48(7):710–721

    CAS  PubMed  Google Scholar 

  • Hanč A, Tlustoš P, Száková J, Habart J, Gondek K (2008) Direct and subsequent effect of compost and poultry manure on the bioavailability of cadmium and copper and their uptake by oat biomass. Plant Soil Environ 54(7):271–278

    Article  Google Scholar 

  • Hegedusova A, Jakabova S, Vargova A, Hegedus O, Pernyeszi TJ (2009) Use of phytoremediation techniques for elimination of lead from polluted soils. Appl Nat Sci 2009:125

    Google Scholar 

  • Henry JR (2000) An overview of the phytoremediation of lead and mercury. Usepa, (August). pp 1–31

    Google Scholar 

  • Heriyanto NM, Subiandono E (2011) Penyerapan polutan logam berat (Hg, Pb dan Cu) oleh jenis-jenis mangrove. J Penelit Hutan Dan Konservasi Alam 8(2):177–188

    Article  Google Scholar 

  • Hess R, Schmid B (2002) Zinc supplement overdose can have toxic effects. J Pediatr Hematol Oncol 24:582–584

    Article  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457

    Article  CAS  PubMed  Google Scholar 

  • Ika Harlyan L, Retnowati D, Hikmah Julinda Sari S, Iranawati F (2015) Concentration of heavy metal (Pb and Cu) in sediment and mangrove Avicennia marina at Porong river estuary, Sidoarjo, East Java. Res J Life Sci 2(2):124–132

    Google Scholar 

  • Iqbal MP (2012) Lead pollution-a risk factor for cardiovascular disease in Asian developing countries. Pak J Pharm Sci 25(1):289

    CAS  PubMed  Google Scholar 

  • Izewska A (2009) The impact of manure, municipal sewage sludge and compost prepared from municipal sewage sludge on crop yield and content of Mn, Zn, Cu, Ni, Pb, Cd in spring rape and spring triticale. J Elem 14(3):449–456

    Google Scholar 

  • Jean-Soro L, Bordas F, Bollinger JC (2012) Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ Pollut 164:175–181

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H (2017) Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 168:1658–1668

    Article  CAS  PubMed  Google Scholar 

  • John BA, Waznah AS (2011) Accumulation and distribution of lead and copper in Avicennia marina and Rhizophora apiculata from Balok Mangrove Forest, Pahang, Malaysia. Sains Malaysiana 40(6):555–560

    Google Scholar 

  • Kandil H, El-Kherbawy MI, Ibrahim SA, Abd-Elfattah A, El-Moez MRA, Badawy SH (2012) Effect of different sources and rates of some organic manure on content of some heavy metals in different soils and plants grown therein: II. Effect on corn plants. Soil Form Fact Process Temper Zone 11(1):19–32

    Google Scholar 

  • Karczewska A, Orlow K, Kabala C, Szopka K, Galka B (2011) Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Commun Soil Sci Plant Anal 42(12):1379–1389

    Article  CAS  Google Scholar 

  • Khan MA, Ahmad I, Rahman IU (2007) Effect of environmental pollution on heavy metals content of Withania somnifera. J Chin Chem Soc 54(2):339–343

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Molecul Plant Microb Interact 17(1):6–15

    Article  CAS  Google Scholar 

  • Laghlimi M, Baghdad B, HEl H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5(5):375–388

    Article  Google Scholar 

  • Lewis AC (2006) Assessment and comparison of two phytoremediation systems treating slow-moving groundwater plumes of TCE. Ohio University, Ohio

    Google Scholar 

  • Li H, Wang Q, Cui Y, Dong Y, Christie P (2005) Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—a preliminary study. Sci Total Environ 339(1–3):179–187

    Google Scholar 

  • Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71(3):273–277

    Google Scholar 

  • Liu Y, Zhu Y, Ding H (2007) Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ Pollut 145(2):387–390

    Article  CAS  PubMed  Google Scholar 

  • Liu WT, Ni JC, Zhou QX (2013) Uptake of heavy metals by trees: prospects for phytoremediation. Mater Sci Forum:743–744

    Google Scholar 

  • Loganathan P, Hedley MJ, Grace ND (2008) Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 29–66

    Chapter  Google Scholar 

  • Luo J, Wu J, Huo S, Qi S, Gu XS (2018) A real scale phytoremediation of multi-metal contaminated e-waste recycling site with Eucalyptus globulus assisted by electrical fields. Chemosphere 201:262–268

    Google Scholar 

  • MacFarlane GR, Burchett MD (2002) Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar Environ Res 54(1):65–84

    Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660

    Article  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16(2):162–175

    Article  CAS  Google Scholar 

  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89(11):1354–1359

    Article  PubMed  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85

    Google Scholar 

  • Miri M, Allahabadi A, Ghaffari HR, Fathabadi ZA, Raisi Z, Rezai M, Aval MY (2016) Ecological risk assessment of heavy metal (HM) pollution in the ambient air using a new bio-indicator. Environ Sci Pollut Res 23(14):14210–14220

    Article  CAS  Google Scholar 

  • Mishra S, Dwivedi SP, Singh RB (2010) A review on epigenetic effect of heavy metal carcinogens on human health. Open Nutraceut J 3:188–193

    CAS  Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Advance in agriculture and biology phytoremediation: a review. Adv Agricult Biol 1(1):5–11

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62(1):78–85

    Article  CAS  Google Scholar 

  • Negri MC, Hinchman RR, Gatliff EG (1996) Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater. Argonne National Lab, IL, USA

    Google Scholar 

  • Neustadt J, Pieczenik S (2007) Patient handout: toxic metal contamination: mercury. Integr Med Innovis Commun 6(2):36–40

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126

    Article  CAS  Google Scholar 

  • Pandey J, Verma RK, Singh S (2019) Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. Int J Phytoremed 21(1):1–14. https://doi.org/10.1080/15226514.2018.1540546

    Article  CAS  Google Scholar 

  • Pereira BFF, Abreu CA, de Herpin U, Abreu MF, de Berton RS (2010) Phytoremediation of lead by jack beans on a Rhodic Hapludox amended with EDTA. Sci Agric (Piracicaba, Braz) 67(3):308–318

    Article  CAS  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. National Risk Management Research Lab, ADA OK

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  PubMed  Google Scholar 

  • Pulford ID, Watson C, McGregor SD (2001) Uptake of chromium by trees: prospects for phytoremediation. Environ Geochem Health 23(3):307–311

    Article  CAS  Google Scholar 

  • Qados AMSA (2015) Phytoremediation of Pb and Cd by Native Tree Species Grown in the Kingdom of Saudi Arabia. J Sci Res Technol 3(1):22–34

    Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley, Hoboken

    Google Scholar 

  • Reinoso-Maset E, Worsfold PJ, Keith-Roach MJ (2012) The effect of EDTA, NTA and picolinic acid on Th (IV) mobility in a ternary system with natural sand. Environ Pollut 162:399–405

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM (2005) Mercury recovery from soils by phytoremediation. Environ Chem:197–204

    Google Scholar 

  • Sakai Y, Ma Y, Xu C, Wu H, Zhu W, YAang J (2012) Phytodesalination of a salt-affected soil with four halophytes in China. Desert Research: The Japanese Desert Society. J Arid Land Stud 22(1):17–20

    Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. ICEHM:542–556

    Google Scholar 

  • Sangeeta M, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Am Euras J Agricult Environ Sci 9(5):560–575

    Google Scholar 

  • Sarwar N, Imran M, Rashid M, Ishaque W, Asif M, Matloob A, Hussain S (2017) Chemosphere Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159(12):3560–3570

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremed Biodegrad 2(4):178–191

    Google Scholar 

  • Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67(11):2229–2240

    Google Scholar 

  • Smolińska B, Król K (2012) Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. J Chem Technol Biotechnol 87(9):1360–1365

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, An J, Liu W, Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150(1–2):106–112

    Google Scholar 

  • Sun Z, Chen J, Wang X, Lv C (2016) Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China. Ecol Eng 86:60–68. https://doi.org/10.1016/j.ecoleng.2015.10.023

    Article  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Article  Google Scholar 

  • Thayalakumaran T, Vogeler I, Scotter DR, Percival HJ, Robinson BH, Clothier BE (2003) Leaching of copper from contaminated soil following the application of EDTA. I. Repacked soil experiments and a model. Soil Res 41(2):323–333

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Ultra J, Yano A, Iwasaki K, Tanaka S, Kang Y, Sakurai K (2005) Influence of chelating agent addition on copper distribution and microbial activity in soil and copper uptake by brown mustard (Brassica juncea). Soil Sci Plant Nutr 51(2):193–202

    Article  CAS  Google Scholar 

  • United States (US) (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FMG, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    Article  CAS  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM. 2003. Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3): 285–321.

    Google Scholar 

  • Veselý T, Tlustoš P, Száková J (2012) Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Int J Phytoremed 14(4):335–349

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vishnoi SR, Srivastava PN (2007). Phytoremediation–green for environmental clean. In Proceedings of Taal 2007: the 12th World lake conference, Vol 1016, p 1021

    Google Scholar 

  • Wang A, Luo C, Yang R, Chen Y, Shen Z, Li X (2012) Metal leaching along soil profiles after the EDDS application – a field study. Environ Pollut 164:204–210

    Article  CAS  PubMed  Google Scholar 

  • Wang FY, Shi ZY, Xu XF, Wang XG, Li YJ (2013) Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Environ Sci Process Impact 15(4):794–801

    Article  CAS  Google Scholar 

  • Wu L, Li Z, Akahane I, Liu L, Han C, Makino T, Christie P (2012) Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytoremed 14(10):1024–1038

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19(8):1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2–3):456–464

    Article  CAS  PubMed  Google Scholar 

  • Zeremski-Škorić TM, Sekulić PĐ, Maksimović IV, Šeremešić SI, Ninkov JM, Milić SB, Vasin JR (2010) Chelate-assisted phytoextraction: effect of EDTA and EDDS on copper uptake by Brassica napus L. J Serbian Chem Soc 75(9):1279–1289

    Google Scholar 

  • Zhang Q, Yan C, Liu J, Lu H, Duan H, Du J, Wang W (2014) Silicon alleviation of cadmium toxicity in mangrove (Avicennia marina) in relation to cadmium compartmentation. J Plant Growth Regul 33(2):233–242

    Google Scholar 

  • Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi S, Jiang Z (2014) The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res 21(7):5076–5085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmadi, O., Pandey, J., KhademMoghadam, N., AsgariLajayer, B., Ghorbanpour, M. (2020). Phytoremediation of Contaminated Soils Using Trees. In: Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A. (eds) Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45975-8_21

Download citation

Publish with us

Policies and ethics