Skip to main content

Impacts of Climate Change on Microbial Activity in Agricultural Egyptian Soils

  • Chapter
  • First Online:
Climate Change Impacts on Agriculture and Food Security in Egypt

Part of the book series: Springer Water ((SPWA))

Abstract

Egypt’s agriculture sector is highly vulnerable to climate change and its exposed to environmental threats in different faces such as energy, water and food security. Specifically, climate change is possible to change plant species composition, abundance and function of soil community, and plant-microbe interactions that together affect the quality of agricultural soils. For microorganisms inhabiting Egyptian soils, some insight has been exposed to high temperature and accumulating of carbonates and soluble salts in Aridisols (desert soils), and the other inhabiting in alluvial soils (Entisols) in the Nile Delta and the Qattara Depression of the western desert. Egyptian soils have a great diversity of microorganisms such as bacteria, actinobacteria, fungi and arbuscular mycorrhizal fungi that play an important role in nutrient cyclings. Unfortunately, the soil is a complex habitat for microbial growth, and the structure and function of microorganisms are tremendously complex in the soil. These complexations lead the difficult to predict the effects of climate change on the activity of Egyptian soil microorganisms. Climate change will have direct and indirect effects on soil microbial activity. Climate changes include increasing temperature, elevated or increasing the concentration of CO2, rise changing soil moisture content, increasing of soil salinity, and drought. These changes led to reversely impacted soil microbial communities that affect biogeochemical cycles of nutrients in agricultural soils. Therefore, understanding of microbial activity in the soil is essential for our ability to evaluate the necessity of biogeochemical cycles-climate feedbacks. Soil microbial activities play an important role in increasing soil fertility and recycling of nutrients within the soil. Activity in soil microorganism and/or enzyme is significant as a sensitive indicator of soil biological quality. These activities are informative to determine changes in soil biochemical properties that are affected by environmental stress from natural phenomena or anthropogenic activities. In this chapter, we review the currently available researches regarding the impact of climate change on soil microbial activity, especially in Egyptian soils. Soil microbial activity includes microbial populations, microbial biomass, enzymes activity, soil beneficial microorganisms and carbon sequestration in Egyptian soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zahran MA (2010) Climate–vegetation relationships: perspectives. In: Gilbert F (ed) Climate–vegetation: Afro-Asian Mediterranean and Red Sea coastal lands. Springer Netherlands, Dordrecht, pp 219–248. https://doi.org/10.1007/978-90-481-8595-5_3

  2. El Kenawy A, López-Moreno JI, Vicente-Serrano SM, Morsi F (2010) Climatological modeling of monthly air temperature and precipitation in Egypt through GIS techniques. Clim Res 42(2):161–176

    Article  Google Scholar 

  3. Agrawala S, Moehner A, El Raey M, Conway D, Van Aalst M, Hagenstad M, Smith J (2004) Development and climate change in Egypt: focus on coastal resources and the Nile. Working Party on Global and Structural Policies, Organization for Economic Cooperation and Development (OECD)

    Google Scholar 

  4. El Massah S, Omran G (2015) Would climate change affect the imports of cereals? The case of Egypt. In: Leal Filho W (ed) Handbook of climate change adaptation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 657–683. https://doi.org/10.1007/978-3-642-38670-1_61

  5. Agwa HE, Al-Sodany YM (2003) Arbuscular-mycorrhizal fungi (Glomales) in Egypt. III: distribution and ecology in some plants in El-Omayed Biosphere Reserve. Egypt J Biol 5:19–26

    Google Scholar 

  6. Zahran H, Moharram A, Mohammad H (1992) Some ecological and physiological studies on bacteria isolated from salt-affected soils of Egypt. J Basic Microbiol 32(6):405–413

    Article  CAS  Google Scholar 

  7. Abd El-Azeem SA, Mehana TA, Shabayek AA (2007) Some plant growth promoting traits of rhizobacteria isolated from Suez Canal region, Egypt. In: African crop science conference proceedings, pp 1517–1525

    Google Scholar 

  8. Hanna AL, Youssef HH, Amer WM, Monib M, Fayez M, Hegazi NA (2013) Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt. J Adv Res 4(1):13–26. https://doi.org/10.1016/j.jare.2011.11.003

    Article  Google Scholar 

  9. Abd El-Azeem SA, Elwan MW, Sung J-K, Ok YS (2012) Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Commun Soil Sci Plant Anal 43(9):1303–1315

    Google Scholar 

  10. Bruce K, Jones T, Bezemer T, Thompson L, Ritchie D (2000) The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Glob Change Biol 6(4):427–434

    Article  Google Scholar 

  11. Runion G, Curl E, Rogers H, Backman P, Rodriguez-Kabana R, Helms B (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Meteorol 70(1–4):117–130

    Article  Google Scholar 

  12. Gao J, Wang E, Ren W, Liu X, Chen Y, Shi Y, Yang Y (2017) Effects of simulated climate change on soil microbial biomass and enzyme activities in young Chinese fir (Cunninghamia lanceolata) in subtropical China. Acta Ecol Sin 37(4):272–278. https://doi.org/10.1016/j.chnaes.2017.02.007

    Article  Google Scholar 

  13. Manzoni S, Katul G (2014) Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils. Geophys Res Lett 41(20):7151–7158

    Article  Google Scholar 

  14. Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res 3(4):316–323. https://doi.org/10.1016/j.iswcr.2015.11.003

    Article  Google Scholar 

  15. Omar SA, Abdel-Sater MA, Khallil AM, Abd-Alla MH (1994) Growth and enzyme activities of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiol 39(1):23–28. https://doi.org/10.1007/bf02814524

    Article  CAS  Google Scholar 

  16. Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem 37(3):455–461. https://doi.org/10.1016/j.soilbio.2004.08.004

  17. Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34(6):777–787

    Article  CAS  Google Scholar 

  18. Schjønning P, Thomsen IK, Moldrup P, Christensen BT (2003) Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Sci Soc Am J 67(1):156–165. https://doi.org/10.2136/sssaj2003.1560

    Article  Google Scholar 

  19. Stres B, Danevčič T, Pal L, Fuka MM, Resman L, Leskovec S, Hacin J, Stopar D, Mahne I, Mandic-Mulec I (2008) Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol Ecol 66(1):110–122

    Article  CAS  Google Scholar 

  20. Abdelrahman Abdalla M, Alavi Panah SK, Bationo A, Chude V, Comerma J, Gerasimova M, Hempel J, Indraratne S, Krasilnikov P, McKenzie N, Mendonça Santos M, Norbu C, Ogunkunle A, Pennock D, Reinsch T, Robinson D, Smith P, Taboada M, Yagi K, Erdogan E (2015) Status of the world’s soil resources—main report

    Google Scholar 

  21. Alshaal T, El-Ramady H, Al-Saeedi AH, Shalaby T, Elsakhawy T, Omara AE-D, Gad A, Hamad E, El-Ghamry A, Mosa A (2017) The rhizosphere and plant nutrition under climate change. In: Essential plant nutrients. Springer, pp 275–308

    Google Scholar 

  22. Burns RG, Dick RP (2002) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, Inc

    Google Scholar 

  23. Tabatabai M (1982) Soil enzymes. In: Methods of soil analysis. Part 2. Chemical and microbiological properties (methods of soil analysis), pp 903–947

    Google Scholar 

  24. Yang L, Zhang Y, Li F (2012) Soil enzyme activities and soil fertility dynamics. In: Advances in citrus nutrition. Springer, pp 143–156

    Google Scholar 

  25. Acosta-Martinez V, Tabatabai M (2000) Enzyme activities in a limed agricultural soil. Biol Fertil Soils 31(1):85–91

    Article  CAS  Google Scholar 

  26. Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 257–311. https://doi.org/10.1007/3-540-29449-x_12

  27. Skujins J (1967) Enzymes in soil. Soil Biochem 1:371–414

    Google Scholar 

  28. El-Shinnawi M (1978) Urease activity in different soils of Egypt. Zentralbl Bakteriol B 133(6):483–492

    CAS  Google Scholar 

  29. Elsoury H, Shouman A, Abdelrazek S, Elkony H (2015) Soil enzymes and microbial activity as influenced by tillage and fertilization in wheat production. Egypt J Soil Sci 55(1):53–65

    Article  Google Scholar 

  30. Hasan H (2000) Ureolytic microorganisms and soil fertility: a review. Commun Soil Sci Plant Anal 31(15–16):2565–2589

    Article  CAS  Google Scholar 

  31. Abd-Alla MH, El-Enany A-WE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169(1):49–58

    Google Scholar 

  32. El-Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Appl Soil Ecol 39(2):161–171. https://doi.org/10.1016/j.apsoil.2007.12.005

  33. Yasser MM, Mousa AS, Massoud ON, Nasr SH (2014) Solubilization of inorganic phosphate by phosphate solubilizing fungi isolated from Egyptian soils. J Biol Earth Sci 4(1):83–90

    Google Scholar 

  34. Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73(2):197–214

    CAS  Google Scholar 

  35. Change IPOC (2007) Climate change 2007: The physical science basis. Agenda 6(07):333

    Google Scholar 

  36. DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LT, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 104:1–13. https://doi.org/10.3389/fmicb.2015.00104 Article 6

    Article  Google Scholar 

  37. Steinweg JM, Dukes JS, Paul EA, Wallenstein MD (2013) Microbial responses to multi-factor climate change: effects on soil enzymes. Front Microbiol 4

    Google Scholar 

  38. Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Change Biol 18(3):1173–1184

    Article  Google Scholar 

  39. Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Change Biol 15(7):1631–1639

    Article  Google Scholar 

  40. Heinemeyer A, Ineson P, Ostle N, Fitter A (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171(1):159–170

    Article  CAS  Google Scholar 

  41. Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Change Biol 14(5):1181–1190

    Article  Google Scholar 

  42. Gavito ME, Olsson PA, Rouhier H, Medina-Peñafiel A, Jakobsen I, Bago A, Azcón-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168(1):179–188

    Article  CAS  Google Scholar 

  43. Heinemeyer A, Fitter A (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 55(396):525–534

    Article  CAS  Google Scholar 

  44. Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35(7):973–978

    Article  CAS  Google Scholar 

  45. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91(2–3):143–153

    Article  CAS  Google Scholar 

  46. Abd-El-Malek Y (1971) Free-living nitrogen-fixing bacteria in Egyptian soils and their possible contribution to soil fertility. Plant Soil 35(1):423–442

    Article  Google Scholar 

  47. Zogg GP, Zak DR, Ringelberg DB, White DC, MacDonald NW, Pregitzer KS (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61(2):475–481

    Article  CAS  Google Scholar 

  48. Saad OALO, Conrad R (1993) Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol Fertil Soils 15(1):21–27. https://doi.org/10.1007/bf00336283

    Article  CAS  Google Scholar 

  49. Fawaz MM, Soliman SA (2016) The potential scenarios of the impacts of climate change on Egyptian resources and agricultural plant production. Open J Appl Sci 6(4):270–286

    Article  Google Scholar 

  50. Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282

    Article  Google Scholar 

  51. Pathak H, Aggarwal PK, Singh S (2012) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute

    Google Scholar 

  52. Balser TC, Gutknecht JL, Liang C (2010) How will climate change impact soil microbial communities? In: Soil microbiology and sustainable crop production. Springer, pp 373–397

    Google Scholar 

  53. Soussana J, Hartwig U (1995) The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187(2):321–332

    Article  Google Scholar 

  54. Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci 104(12):4990–4995

    Article  CAS  Google Scholar 

  55. Niklaus PA (1998) Effects of elevated atmospheric CO2 on soil microbiota in calcareous grassland. Glob Change Biol 4(4):451–458

    Article  Google Scholar 

  56. Dijkstra FA, Hobbie SE, Reich PB, Knops JM (2005) Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant Soil 272(1–2):41–52

    Article  CAS  Google Scholar 

  57. Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147(1):189–200

    Article  CAS  Google Scholar 

  58. Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167(3):859–868

    Article  CAS  Google Scholar 

  59. Nannipieri P (2011) Potential impacts of climate change on microbial function in soil. In: Sustaining soil productivity in response to global climate change: science, policy, and ethics, pp 201–211

    Google Scholar 

  60. Luske B, van der Kamp J (2009) Carbon sequestration potential of reclaimed desert soils in Egypt. Louis Bolk Instituut & Soil and More International. http://orgprints.org/16438/1/2192.pdf. Accessed 4 Dec 2009

  61. Muñoz-Rojas M, Abd-Elmabod SK, Zavala LM, De la Rosa D, Jordán A (2017) Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: a case study in Northern Egypt. Agric Ecosyst Environ 238(Supplement C):142–152. https://doi.org/10.1016/j.agee.2016.09.001

  62. Skopp J, Jawson M, Doran J (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54(6):1619–1625

    Article  Google Scholar 

  63. Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60(2):453–461. https://doi.org/10.1007/s00248-010-9727-1

    Article  Google Scholar 

  64. Badran R, Abdel-Rahiem A (1996) The effect of soil moisture content on the cellulolytic mycoflora of soil amended with cellulosic remains. Microbiol Res 151(3):301–308

    Article  Google Scholar 

  65. Davies Jr F, Olalde-Portugal V, Aguilera-Gomez L, Alvarado M, Ferrera-Cerrato R, Boutton T (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Horticult 92(3–4):347–359

    Google Scholar 

  66. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42

    Article  Google Scholar 

  67. Elwan S, Mahmoud S (1960) Note on the bacterial flora of the Egyptian desert in summer. Arch Mikrobiol 36(4):360–364

    Article  Google Scholar 

  68. Vasileiadis S, Coppolecchia D, Puglisi E, Balloi A, Mapelli F, Hamon RE, Daffonchio D, Trevisan M (2012) Response of ammonia oxidizing bacteria and archaea to acute zinc stress and different moisture regimes in soil. Microb Ecol 64(4):1028–1037. https://doi.org/10.1007/s00248-012-0081-3

    Article  CAS  Google Scholar 

  69. Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment-plants-molecules, pp 3–20

    Google Scholar 

  70. Mohamed ES, Morgun EG, Goma Bothina SM (2011) Assessment of soil salinity in the Eastern Nile Delta (Egypt) using geoinformation techniques. Mosc Univ Soil Sci Bull 66(1):11–14. https://doi.org/10.3103/s0147687411010030

    Article  Google Scholar 

  71. Lu H, Lashari MS, Liu X, Ji H, Li L, Zheng J, Kibue GW, Joseph S, Pan G (2015) Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. Eur J Soil Biol 70(Supplement C):67–76. https://doi.org/10.1016/j.ejsobi.2015.07.005

  72. de Souza Silva CMM, Fay EF (2012) Effect of salinity on soil microorganisms. In: Hernandez-Soriano MC (ed) Soil health and land use management. Intech Open. https://doi.org/10.5772/28613. Available from: https://www.intechopen.com/books/soil-health-and-land-use-management/effect-of-salinity-on-soil-microorganisms

  73. Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soils 44(7):943–953. https://doi.org/10.1007/s00374-008-0279-1

    Article  Google Scholar 

  74. Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137(1–2):100–108. https://doi.org/10.1016/j.geoderma.2006.08.001

    Article  CAS  Google Scholar 

  75. Mohamed NN (2016) Management of salt-affected soils in the Nile Delta. In: The Nile Delta. Springer, pp 265–295

    Google Scholar 

  76. Zahran H (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25(3):211–223

    Article  CAS  Google Scholar 

  77. Ragab M (1993) Distribution pattern of soil microbial population in salt-affected soils. In: Lieth H, Al Masoom AA (eds) Towards the rational use of high salinity tolerant plants: vol. 1 deliberations about high salinity tolerant plants and ecosystems. Springer Netherlands, Dordrecht, pp 467–472. https://doi.org/10.1007/978-94-011-1858-3_48

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samy Abd El-Malik Mohamed Abd El-Azeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd El-Azeem, S.A.EM.M. (2020). Impacts of Climate Change on Microbial Activity in Agricultural Egyptian Soils. In: Ewis Omran, ES., Negm, A. (eds) Climate Change Impacts on Agriculture and Food Security in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-41629-4_6

Download citation

Publish with us

Policies and ethics