Skip to main content

Nanofertilizers

  • Chapter
  • First Online:
Nanoagronomy

Abstract

Fertilizers are long being utilized in agricultural sector for crop maintenance but the problem with the conventional fertilizers is their persistence in soil for longer period of time causing barrenness of soil. As a result, plants are deprived of essential nutrients. Nano fertilizers provide best possible solution to overcome this problem as they are released on demand, site specific, efficient and easily soluble. In recent years bio nanofertilizers have gained much interest over the conventional chemical fertilizers as these are environment friendly and cost effective. Increased demand of food with outburst of global population can be dealt with the nanofertilizers in agricultural system. It is an efficient way to produce early germination of seed which in turn can help rapid and early crop production in short period of time. The application of these fertilizers at optimum concentration boosts the crop yield though the overdose can cause a decline or reduction in crop production because of their mineral toxicity. For various metabolic reactions nanofertilizers offers great surface area that increases photosynthesis rate, improves the crop biomass and also help the crop to combat environment stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adak T, Kumar J, Dey D, Shakil N, Walia S (2012) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (glycine max). J Environ Sci Health B 47(3):226–231

    Article  CAS  PubMed  Google Scholar 

  • Adak T, Kumar J, Shakil NA, Pandey S (2016) Role of nano‐range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings. J Sci Food Agric 96(13):4351–4357

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2016) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr 39(1):136–146

    Article  CAS  Google Scholar 

  • Ahmed O, Sumalatha G, Muhamad AN (2010) Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. Int J Phys Sci 5(15):2393–2401

    CAS  Google Scholar 

  • Allen ER (1991) Supplying nitrogen, phosphorus, and potassium to plants through dissolution and ion exchange using a zeolite-based substrate. Texas A & M University, Texas, AZ

    Google Scholar 

  • Amon M, Dobeic M, Sneath RW, Phillips VR, Misselbrook TH, Pain BF (1997) A farm-scale study on the use of clinoptilolite zeolite and De-Odorase® for reducing odour and ammonia emissions from broiler houses. Bioresour Technol 61(3):229–237

    Article  CAS  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  CAS  Google Scholar 

  • Arthanareeswaran G, Devi TS, Raajenthiren M (2008) Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Sep Purif Technol 64(1):38–47

    Article  CAS  Google Scholar 

  • Aschberger K, Gottardo S, Amenta V, Arena M, Moniz FB, Bouwmeester H, Brandhoff P, Mech A, Pesudo LQ, Rauscher H (2015) Nanomaterials in food-current and future applications and regulatory aspects. Int J Phys A Conf Ser 617:012032

    Article  Google Scholar 

  • Ayan S, Yahyaoglu Z, Gercek V, Şahin A (2005) Utilization of zeolite as a substrate for containerized oriental spruce (Picea orientalis L.(Link.)) seedlings propagation. Paper presented at the International Symposium on Growing Media 779

    Google Scholar 

  • Bagdasarov V, Kazachenko A, Rustambekov M, Uspenskij B, Kuznetsova V, Efremov E (2004) Prolonged-activity nitrogen-zeolite fertilizer. Russ: RU 2222514, C2

    Google Scholar 

  • Barbarick K, Lai T, Eberl D (1990) Exchange fertilizer (phosphate rock plus ammonium-zeolite) effects on sorghum-sudangrass. Soil Sci Soc Am J 54(3):911–916

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Brady N, Well R (1999) The nature and properties of soils. Prentice Hill, Upper Saddle River, NJ

    Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Tech 40(14):4374–4381

    Article  CAS  Google Scholar 

  • Burriesci N, Valente S, Ottana R, Cimino G, Zipelli C (1984) Utilization of zeolites in spinach growing. Zeolites 4(1):5–8

    Article  CAS  Google Scholar 

  • Butorac A, Filipan T, Basic F, Butorac J, Mesic M, Kisic I (2002) Crop response to the application of special natural amendments based on zeolite tuff. Rostlinna Vyroba 48(3):118–124

    Google Scholar 

  • Cengeloglu Y, Tor A, Arslan G, Ersoz M, Gezgin S (2007) Removal of boron from aqueous solution by using neutralized red mud. J Hazard Mater 142(1–2):412–417

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):595–603

    Article  CAS  Google Scholar 

  • Chinnamuthu C, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1/6):17–31

    Google Scholar 

  • Choy JH, Choi SJ, Oh JM, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36(1–3):122–132

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166

    Article  CAS  PubMed  Google Scholar 

  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155(2):283–286

    Article  CAS  PubMed  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal G, Vikas J, Dhawan A (2010) Insect pest problems and crop losses: changing trends. Ind J Ecol 37(1):1–7

    Google Scholar 

  • Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3(1):1–9

    Article  CAS  Google Scholar 

  • Dikshit A, Shukla SK, Mishra RK (2013) Exploring nanomaterials with PGPR in current agricultural scenario: PGPR with special reference to nanomaterials. Lap Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Dos SSM, Cocenza DS, Grillo R, De Melo NFS, Tonello PS, De Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190(1–3):366–374

    Google Scholar 

  • Dutta J, Sugunan A (2004) Colloidal self-organization for nanoelectronics. Paper presented at the Semiconductor Electronics, 2004. ICSE 2004. IEEE International Conference

    Google Scholar 

  • Dwairi I (1998) Renewable, controlled and environmentally safe phosphorus release in soils from mixtures of NH 4+-phillipsite tuff and phosphate rocks. Environ Geol 34(4):293–296

    Article  CAS  Google Scholar 

  • El-Kereti M, El-Feky SA, Khater SM, Osman AY, El-Sherbini AES (2013) Zno nanofertilizer and he ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5(3):169–181

    Article  CAS  PubMed  Google Scholar 

  • Flanigen E, Mumpton F (1981) Commercial properties of natural zeolites. Mineralogy and geology of natural zeolites. In: Reviews in mineralogy, vol 4. Mineralogical Society of America, Washington, DC, pp 165–175

    Google Scholar 

  • Ghaly AE (2009) The black cutworm as a potential human food. Am J Biochem Biotech 5(4):210–220

    Article  CAS  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano P, Risueño MC, Pérez-de-Luque A (2007) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Borowiec J, Okoh J (1997) Toxicity identification of poultry litter aqueous leachate. Poult Sci 76(10):1364–1367

    Article  CAS  PubMed  Google Scholar 

  • Hasaneen M, Abdel-Aziz H, El-Bialy D, Omer AM (2014) Preparation of chitosan nanoparticles for loading with NPK fertilizer. Afr J Biotechnol 13(31):3158–3164

    Article  CAS  Google Scholar 

  • He Z, Pinnau I, Morisato A (2002) Nanostructured poly (4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination 146(1–3):11–15

    Article  CAS  Google Scholar 

  • Huang ZT, Petrovic AM (1994) Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens. AGRIS 23(6):1190–1194

    CAS  Google Scholar 

  • Huang L, Guo Y, Peng Z, Porter AL (2011) Characterising a technology development at the stage of early emerging applications: nanomaterial-enhanced biosensors. Technol Anal Strat 23(5):527–544

    Article  Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7(1):154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Jampílek J, Kralova K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S22(3):321–361

    Google Scholar 

  • Jha M, Prasad A (2006) Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World J Microbiol Biotechnol 22(1):73–79

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Eur Nanotechnol Gateway. www.nanoforum.org

    Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Kavak D (2009) Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. J Hazard Mater 163(1):308–314

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Kithome M, Paul J, Lavkulich L, Bomke A (1998) Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci Soc Am J 62(3):622–629

    Article  CAS  Google Scholar 

  • Köse TE, Öztürk N (2008) Boron removal from aqueous solutions by ion-exchange resin: column sorption–elution studies. J Hazard Mater 152(2):744–749

    Article  PubMed  CAS  Google Scholar 

  • Krutilina VS, Polyanskaya SM, Goncharova NA, Letchamo W (2000) Effects of zeolite and phosphogypsum on growth, photosynthesis and uptake of Sr, Ca and Cd by barley and corn seedlings. J Environ Sci Health Part A 35(1):15–29

    Article  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Sarita SM, Dilbaghi N (2015) Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agrinanotechnology. Sci Adv Mater 7:1143–1148

    Article  CAS  Google Scholar 

  • Latifah O, Ahmed O, Muhamad AN (2011) Reducing ammonia loss from urea and improving soil exchangeable ammonium and available nitrate in non waterlogged soils through mixing zeolite and sago (Metroxylon sagu) waste water. Int J Phys Sci 6(4):866–870

    CAS  Google Scholar 

  • Li Z, Zhang Y (2010) Use of surfactant-modified zeolite to carry and slowly release sulfate. Desalin Water Treat 21(1–3):73–78

    Article  CAS  Google Scholar 

  • Li JX, Wee CD, Sohn BK (2010) Growth response of hot pepper applicated with ammonium and potassium loaded zeolite. Kor J Soil Sci Fertil 43(5):741–747

    Google Scholar 

  • Liscano JF, Wilson CE, Norman JRJ, Slaton NA (2000) Zinc availability to rice from seven granular fertilizers. In: Arkansas Agricultural Experiment Station research bulletin, vol 963. University of Arkansas, Fayetteville, AR

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liang R, Zhan F, Liu Z, Niu A (2006) Synthesis of a slow release and superabsorbent nitrogen fertilizer and its properties. Polym Adv Tech 17(6):430–438

    Article  CAS  Google Scholar 

  • Magalhães ASG, Almeida Neto MP, Bezerra MN, Feitosa J (2013) Superabsorbent hydrogel composite with minerals aimed at water sustainability. J Braz Chem Soc 24(2):304–313

    Article  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Hortic Plants 3(1):25–32

    Google Scholar 

  • Malakouti MJ (2008) The effect of micronutrients in ensuring efficient use of macronutrients. Turk J Agric For 32(3):15–220

    Google Scholar 

  • Malhi S, Haderlin L, Pauly D, Johnson A (2002) Improving fertiliser use efficiency. Better Crops 86:22–25

    Google Scholar 

  • Manik A, Subramanian K (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284

    Article  CAS  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–3

    Google Scholar 

  • Mazur G, Medvid G, Gvigora I (1986) Use of natural zeolite to increase the fertilizer of coarse soils. Soviet Soil Sci 16(4):105–111

    Google Scholar 

  • Meng H, Xia T, George S, Nel AE (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3(7):1620–1627

    Article  CAS  PubMed  Google Scholar 

  • Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture and environmental soil remediation. Rev Mineral Geochem 45(1):619–654

    Article  CAS  Google Scholar 

  • Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov Food Sci Emerg Technol 28:73–80

    Article  CAS  Google Scholar 

  • Montesano FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increaseswater retention properties of growing media and plant growth. Agric Agric Sci Proc 4:451–458

    Google Scholar 

  • Naderi M, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229

    Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ombódi A, Saigusa M (2000) Broadcast application versus band application of polyolefin‐coated fertilizer on green peppers grown on andisol. J Plant Nutr 23(10):1485–1493

    Article  Google Scholar 

  • Otles S, Yalcın B (2015) Chapter 8. Strategic role of nanobiosensor in food: benefits and bottlenecks. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer Inter Publishers, Cham

    Google Scholar 

  • Pandey ACS, Sanjay S, Yadav SR (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    Article  CAS  Google Scholar 

  • Perrin TS, Drost DT, Boettinger JL, Norton JM (1998) Ammonium loaded clinoptilolite: a slow release nitrogen fertilizer for sweet corn. J Plant Nutr 21(3):515–530

    Article  CAS  Google Scholar 

  • Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12(1):1–15

    Article  Google Scholar 

  • Pijls L, Ashwell M, Lambert J (2009) EURRECA–a network of excellence to align European micronutrient recommendations. Food Chem 113(3):748–753

    Article  CAS  Google Scholar 

  • Polat H, Vengosh A, Pankratov I, Polat M (2004) A new methodology for removal of boron from water by coal and fly ash. Desalination 164(2):173–188

    Article  CAS  Google Scholar 

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad T, Sajanlal P, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Preetha PS, Balakrishnan N (2017) A review of nano fertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6(12):3117–3133

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rahimi D, Kartoolinejad D, Nourmohammadi K, Naghdi R (2016) Increasing drought resistance of alnus subcordata ca mey. Seeds using a nano priming technique with multi-walled carbon nanotubes. J For Sci 62(6):269–278

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Raliya R (2012) Appliance of nanoparticles on plant system and associated rhizospheric microflora. Dissertation, Jai Narain Vyas University, Jodhpur, p 199

    Google Scholar 

  • Rameshaiah G, Pallavi J, Shabnam S (2015) Nano fertilizers and nano sensors–an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):314–320

    Google Scholar 

  • Rana RK, Viswanathan B (1998) Mo incorporation in MCM-41 type zeolite. Catal Lett 52(1–2):25–29

    Article  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations insecticides design using advanced technologies. Springer, New York, NY, pp 1–39

    Book  Google Scholar 

  • Schmidt R, Szakal P (2007) The application of copper and zinc containing ion-exchanged synthesised zeolite in agricultural plant growing. Nova Biotechnol 7(1):57–62

    Google Scholar 

  • Sharmila R (2010) Nutrient release pattern of nano-fertilizer formulations. Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Sheta A, Falatah A, Al-Sewailem M, Khaled E, Sallam A (2003) Sorption characteristics of zinc and iron by natural zeolite and bentonite. Micropor Mesopor Mater 61(1–3):127–136

    Article  CAS  Google Scholar 

  • Shukla SK, Kumar R, Mishra RK, Pandey A, Pathak A, Zaidi M, Dikshit A (2015) Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): a step toward development of nano-biofertilizers. Nanotechnol Rev 4(5):439–448

    Article  CAS  Google Scholar 

  • Singh MD (2017) Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agric Sci 9(7):3831–3833

    CAS  Google Scholar 

  • Song JQ, Fujiyama H (1996) Difference in-response of rice and tomato subjected to sodium salinization to the addition of calcium. Soil Sci Plant Nutr 42(3):503–510

    Article  Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture―carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99(3):274–275

    CAS  Google Scholar 

  • Subramanian K, Rahale CS (2009) Synthesis of nanofertiliser formulations for balanced nutrition. In: Proceedings of the Indian Society of Soil Science-Platinum Jubilee Celebration, 22–25 December

    Google Scholar 

  • Supapron J, Pitayakon L, Kamalapa W, Touchamon P (2002) Effect of zeolite and chemical fertilizer on the change of phycical and chemical properties on Lat Ya soil series for sugar cane. Paper presented at the Proceedings of the 17th WCSS Symposium, August

    Google Scholar 

  • Tarafdar J (2012) Perspectives of nanotechnological applications for crop production. NAAS News 12:8–11

    Google Scholar 

  • Tarafdar J (2015) Nanoparticle production, characterization and its application to horticultural crops. In: Compendium of winter school on utilization of degraded land and soil through horticultural crops for improving agricultural productivity and environmental quality. NRCSS, Ajmer, pp 222–229

    Google Scholar 

  • Tarafdar J, Agrawal A, Raliya R, Kumar P, Burman U, Kaul R (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4(4):324–328

    Article  CAS  Google Scholar 

  • Tarafdar J, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis tfr-5. J Bionanosci 6(2):84–89

    Article  CAS  Google Scholar 

  • Tarafdar J, Xiang Y, Wang WN, Dong Q, Biswas P (2012c) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144

    Google Scholar 

  • Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: Evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87(2):316–321

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P (2002) Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 21–35

    Google Scholar 

  • Treacy MM, Higgins JB (2007) Collection of simulated XRD powder patterns for zeolites, 5th edn. Elsevier, Amsterdam. Revised edition

    Google Scholar 

  • Trenkel ME (1997) Controlled-release and stabilized fertilizers in agriculture, vol 11. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Valente S, Burriesci N, Cavallaro S, Galvagno S, Zipelli C (1982) Utilization of zeolites as soil conditioner in tomato-growing. Zeolites 2(4):271–274

    Article  CAS  Google Scholar 

  • VanderGheynst JS, Scher H, Guo HY (2006) Design of formulations for improved biological control agent viability and sequestration during storage. Ind Biotech 2(3):213–219

    Article  CAS  Google Scholar 

  • Vandergheynst J, Scher H, Guo HY, Schultz D (2007) Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. Biol Control 52(2):207–229

    CAS  Google Scholar 

  • Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssdna. Biosens Bioelectron 24(9):2772–2777

    Article  CAS  PubMed  Google Scholar 

  • Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554

    Article  CAS  Google Scholar 

  • Wei Q, Yang D, Fan M, Harris HG (2013) Applications of nanomaterial-based membranes in pollution control. Crit Rev Environ Sci Technol 43(22):2389–2438

    Article  Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72(2):240–247

    Article  CAS  Google Scholar 

  • Wu S, Cao Z, Li Z, Cheung K, Wong M (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1–2):155–166

    Article  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  PubMed  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86

    Article  CAS  Google Scholar 

  • Xiao Q, Zhang F, Wang Y, Zhang J, Zhang S (2008) Effects of slow/controlled release fertilizers felted and coated by nano-materials on crop yield and quality. Plant Nutr Fertil Sci 14(5):951–955

    CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Huang P (2007) Kinetics of potassium release from illite as influenced by different phosphates. Geoderma 138(3–4):221–228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, B.Z., Naseer, I. (2020). Nanofertilizers. In: Javad, S. (eds) Nanoagronomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41275-3_8

Download citation

Publish with us

Policies and ethics