Skip to main content

Nanofertilizers in Agriculture: Futuristic Approach

  • Chapter
  • First Online:
Nano-Biofortification for Human and Environmental Health

Abstract

Agricultural land is decreasing and the demand for food is increasing day by day. Hence, it is necessary to increase the annual food production to satisfy the alarming population. This led to uncontrolled overuse of chemical fertilizers, macro-micro-nutrient deficiency, degradation of soil fertility, and rapid climate change. Traditional chemical fertilizers are expensive as well as harmful to human and environment health. Nanofertilizers are an emerging technology in agriculture which helps to increase crop yield and nutrient use efficiency and to reduce excessive use of fertilizers. These fertilizers are designed target oriented and not easily lost to environment. It comprises nanoformulations of nutrients deliverable to plants, enabling easy absorption. They have higher surface area due to very less size of particles which facilitates more penetration into the plants from surface soil or leaves and also have high reactivity with other compounds. These fertilizers play an important role to substitute synthetic fertilizers for sustainable agriculture and are found more suitable for the stimulation of plant development. Nanofertilizers provide more area for photosynthesis, more sunlight absorption, and higher yield of the crops. Although nanofertilizers have numerous advantages and few limitations, their consequences during and after application should be properly noticed. Therefore, nanofertilizers have enormous scope to contribute for sustainable agriculture production, especially in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasifar, A., Shahrabadi, F., & ValizadehKaji, B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 43, 1104–1118.

    Article  CAS  Google Scholar 

  • Adhikari, T., & Ramana, S. (2019). Nano fertilizer: Its impact on crop growth and soil health. Journal of Research PJTSAU, XLVII, 1–70.

    Google Scholar 

  • Aghdam, M. T. B., Mohammadi, H., & Ghorbanpour, M. (2016). Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Revista Brasileira de Botânica, 39, 139–146.

    Google Scholar 

  • Akanbi-Gada, M. A., Ogunkunle, C. O., Vishwakarma, V., Viswanathan, K., & Fatob, P. O. (2019). Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environmental Technology and Innovation, 14, 100325.

    Article  Google Scholar 

  • Alabdallah, N. M., & Alzahrani, H. S. (2020). The potential mitigation effect of ZnO nanoparticles on (Abelmoschus esculentus L. Moench) metabolism under salt stress conditions. Saudi Journal of Biological Sciences, 27, 3132–3137.

    Article  CAS  Google Scholar 

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision (ESA working paper no. 12-03). FAO.

    Google Scholar 

  • Arole, V. M., & Munde, S. V. (2014). Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. Journal of Materials Science, 1, 89–93.

    Google Scholar 

  • Asgari-Targhi, G., Iranbakhsh, A., & Ardebili, Z. O. (2018). Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiology and Biochemistry, 127, 393–402.

    Article  CAS  Google Scholar 

  • Ashkavand, P., Zarafshar, M., Tabari, M., Mirzaie, J., Nikpour, A., Bordbar, S. K., Struve, D., & Striker, G. G. (2018). Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica, 53(2), 207–219.

    Article  Google Scholar 

  • Aziz, H. M. A., Hasaneen, M. N., & Omer, A. M. (2016). Nano chitosan NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), e0902. https://doi.org/10.5424/sjar/2016141-8205

    Article  Google Scholar 

  • Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., Yadav, S. K., Das, A., Yadav, V., Yadav, B., Shekhawat, K., Upadhyay, P. K., Yadav, D. K., & Singh, V. K. (2022). Nanofertilizers for agricultural and environmental sustainability. Chemosphere, 292, 133451.

    Article  CAS  Google Scholar 

  • Belal, E., & El-Ramady, H. (2016). Nanoparticles in water, soils and agriculture. In S. Ranjan, N. Dasgupta, & E. Lichtfouse (Eds.), Nanoscience in food and agriculture 2 (Sustainable agriculture reviews) (Vol. 21). Springer.

    Chapter  Google Scholar 

  • Bhardwaj, A. K., Arya, G., Kumar, R., Hamed, L., Pirasteh-Anosheh, H., Poonam Jasrotia, P., Kashyap, P. L., & Singh, G. P. (2022). Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. Journal of Nanbiotechnology, 20, 19.

    Article  CAS  Google Scholar 

  • Chen, J., & Wei, X. (2018). Controlled-release fertilizers as a means to reduce nitrogen leaching and runoff in container-grown plant production. In A. Khan & S. Fahad (Eds.), Nitrogen in agriculture-updates (pp. 33–52). InTech.

    Google Scholar 

  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22. https://doi.org/10.1007/s10311-016-0600-4

    Article  CAS  Google Scholar 

  • Chhowalla, M. (2017). Slow release nanofertilizers for bumper crops. ACS Central Science. https://doi.org/10.1021/acscentsci.7b00091

  • Corredor, E., Testillano, P. S., Coronado, M. J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., Ibarra, M. R., de la Fuente, J. M., Rubiales, D., Perez-de-Luque, A., & Risueno, M. C. (2009). Nanoparticle penetration and transport in living pumpkin plants: In situsubcellular identification. BMC Plant Biology, 9(1), 1–1.

    Article  Google Scholar 

  • Dehkourdi, E. H., & Mosavi, M. (2013). Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) invitro. Biological Trace Element Research, 155, 283–286.

    Article  CAS  Google Scholar 

  • Delfani, M., Firouzabadi, M. B., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis, 45, 530–540.

    Article  CAS  Google Scholar 

  • Dinesh kumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M. N. A., & Sampathkumar, P. (2018). Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valorization, 9(5), 793–800. https://doi.org/10.1007/s12649-017-9873-5

    Article  CAS  Google Scholar 

  • Ditta, A., & Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnology Reviews, 5(2), 209–229.

    Article  CAS  Google Scholar 

  • Djanaguiraman, M., Belliraj, N., Bossmann, S. H., & Prasad, P. V. V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 3, 2479–2491.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Bradfield, S. J., Kumar, P., White, J. C., Musante, C., & Ma, X. (2016). Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano, 3(1), 114–126.

    CAS  Google Scholar 

  • El-Ghamry, A., Mosa, A. A., Alshaal, T., & El-Ramady, H. (2018). Nanofertilizers vs. biofertilizers: New insights. Environment Biodiversity and Soil Security, 2, 51–72.

    Google Scholar 

  • Fan, S. (2014, August). Ending hunger and undernutrition by 2025: The role of horticultural value chains. In XXIX International horticultural congress on horticulture: Sustaining lives, livelihoods and landscapes (IHC2014): Plenary, Vol. 1126, pp. 9–20.

    Google Scholar 

  • Faraji, J., & Sepehri, A. (2020). Exogenous nitric oxide improves the protective effects of TiO2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. Journal of Soil Science and Plant Nutrition, 20, 703–714.

    Article  CAS  Google Scholar 

  • Fatima, F., Hashim, A., & Anees, S. (2020). Efficacy of nanoparticles as nanofertilizer production: A review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11218-9

  • Feregrino-Perez, A. A., Magaña-López, E., Guzmán, C., & Esquivel, K. (2018). A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Scientia Horticulturae, 238, 126–137.

    Article  Google Scholar 

  • Fertahi, S., Bertrand, I., Ilsouk, M., Oukarroum, A., Zeroual, Y., & Barakat, A. (2020). New generation of controlled release phosphorus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. International Journal of Biological Macromolecules, 143, 153–162.

    Article  CAS  Google Scholar 

  • Ganesan, V. (2015). Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis Willd. International Journal of Science and Research, 4, 690–695.

    Google Scholar 

  • Ghafari, H., & Razmjoo, J. (2013). Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. International Journal of Agronomy and Plant Production, 4, 2997–3003.

    Google Scholar 

  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science & Technology, 47, 10645–10652.

    CAS  Google Scholar 

  • Golbashy, M., Sabahi, H., Allahdadi, I., Nazokdast, H., & Hosseini, M. (2017). Synthesis of highly intercalated urea-clay nanocomposite via domestic montmorillonite as eco-friendly slow-release fertilizer. Archives of Agronomy and Soil Science, 63(1), 84–95.

    Article  CAS  Google Scholar 

  • Hafeez, B., Khanif, M., & Saleem, M. (2013). Role of zinc in plant nutrition: A review. American Journal of Experimental Agriculture, 3, 374–391.

    Article  CAS  Google Scholar 

  • Handayati, W., & Sihombing, D. (2019). Study of NPK fertilizer effect on sunflower growth and yield. AIP Conference Proceedings, 2120(July), 3–7. https://doi.org/10.1063/1.5115635

    Article  CAS  Google Scholar 

  • Hu, J., Guo, H., Li, J., Gan, Q., Wang, Y., & Xing, B. (2017). Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution, 221, 199–208.

    Article  CAS  Google Scholar 

  • Hussain, N., Bilal, M., & Iqbal, H. M. (2022). Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment. Biomaterials and Polymers Horizon, 1(1), 1–11.

    Google Scholar 

  • Iavicoli, I., Leso, V., Beezhold, D. H., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96–111.

    Article  CAS  Google Scholar 

  • Iqbal, M., Raja, N. I., Hussain, M., Ejaz, M., & Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology Transaction A: Science, 43, 387–395.

    Article  Google Scholar 

  • Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Journal of Microbiology, 2(1), 22–28.

    Google Scholar 

  • Kah, M. (2015). Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry, 3, 64.

    Article  Google Scholar 

  • Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13, 677–684.

    Article  CAS  Google Scholar 

  • Kalwani, M., Chakdar, H., Srivastava, A., Pabbi, S., & Shukla, P. (2022). Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere, 287, 132107.

    Article  CAS  Google Scholar 

  • Kim, D. Y., Kadam, A., Shinde, S., Saratale, R. G., Patra, J., & Ghodake, G. (2018). Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. Journal of the Science of Food and Agriculture, 98, 849–864.

    Article  CAS  Google Scholar 

  • Kole, C., Kole, P., Randunu, K. M., Choudhary, P., Ke, P. C., Rao, A. M., & Marcus, R. K. (2013). Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 13, 13–37.

    Article  Google Scholar 

  • Konate, A., Wang, Y., He, X., Adeel, M., Zhang, P., Ma, Y., Ding, Y., Zhang, J., Yang, J., Kizito, S., & Rui, Y. (2018). Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicology and Environmental Safety, 165, 547–554.

    Article  CAS  Google Scholar 

  • Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., BerugodaArachchige, D. M., Kumarasinghe, A. R., Dahanayake, D., Karunaratne, V., & Amaratunga, G. A. (2017). Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 11, 1214–1221.

    Article  CAS  Google Scholar 

  • Kumar, V., Guleria, P., Kumar, V., & Yadav, S. K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of the Total Environment, 461, 462–468.

    Article  Google Scholar 

  • Kumar, Y., Towari, K. N., Nayak, R. K., Rai, A., Singh, S. P., Singh, A. N., Kumar, Y., Tomar, H., Singh, T., & Raliya, R. (2020). Nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian Journal of Fertilisers, 16(8), 772–786.

    Google Scholar 

  • Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463–469.

    Article  Google Scholar 

  • Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., & Saleem, M. (2016). Synthesis and characterization of zeolite based nano-composite: An environment friendly slow-release fertilizer. Microporous and Mesoporous Materials, 232, 174–183.

    Article  CAS  Google Scholar 

  • Leon-Silva, S., Arrieta-Cortes, R., Fernandez-Luqueno, F., & Lopez-Valdez, F. (2018). Design and production of nanofertilizers. In Agricultural nanobiotechnology (pp. 17–31). Springer.

    Google Scholar 

  • Linglan, M., Chao, L., Chunxiang, Q., Sitao, Y., Jie, L., Fengqing, G., & Fashui, H. (2008). Rubisco activase m-RNA expression in spinach: Modulation by nanoanatase treatment. Biological Trace Element Research, 122, 168–178.

    Article  Google Scholar 

  • Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4(1), 1–6.

    Google Scholar 

  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, D., Zhang, S., He, X., Wang, Y., & Feng, Z. (2005). Responses of peanut to nano-calcium carbonate. Journal of Plant Nutrition Fertiliser (China), 11, 385–389.

    Google Scholar 

  • Lopez-Vargas, E. R., Ortega-Ortíz, H., Cadenas-Pliego, G., De Alba Romenus, K., Cabrera de la Fuente, M., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2018). Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences, 8, 1020.

    Article  Google Scholar 

  • Lu, S., Feng, C., Gao, C., Wang, X., Xu, X., Bai, X., Gao, N., & Liu, M. (2016). Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient release. Journal of Agricultural and Food Chemistry, 64, 4965–4974.

    Article  CAS  Google Scholar 

  • Maghsoodi, M. R., Ghodszad, L., & AsgariLajayer, B. (2020). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants. Environmental Technology and Innovation, 19, 100869. https://doi.org/10.1016/j.eti.2020.100869

    Article  Google Scholar 

  • Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 7.

    Google Scholar 

  • Mahapatra, D. M., Satapathy, K. C., & Panda, B. (2022). Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Science of the Total Environment, 803, 149990.

    Article  CAS  Google Scholar 

  • Mikkelsen, R. (2018). Nanofertilizer and nanotechnology: A quick look. Better Crops, 102, 18–19.

    Article  Google Scholar 

  • Mohamed, A. K. S. H., Qayyum, M. F., Abdel-Hadi, A. M., Rehman, R. A., Ali, S., & Rizwan, M. (2017). Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63, 1736–1747.

    Article  CAS  Google Scholar 

  • Moradbeygi, H., Jamei, R., Heidari, R., & Darvishzadeh, R. (2020). Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae, 272, 109537.

    Article  CAS  Google Scholar 

  • Naderi, M. R., & Danesh-Sharaki, A. (2013). Nano fertilizers and their role in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 5(19), 2229–2232.

    Google Scholar 

  • Nair Gopalakrishnan, P. M. (2018). Toxicological impact of carbon nanomaterials on plants. In Nanotechnology, food security and water treatment (pp. 163–183). Springer.

    Chapter  Google Scholar 

  • Narayanan, A., Sharma, P., & Moudgil, B. M. (2013). Applications of engineered particulate systems in agriculture and food industry. KONA Powder and Particle Journal, 30, 221–235.

    Article  CAS  Google Scholar 

  • Narayanan, S., Cai, C. Y., Assaraf, Y. G., Guo, H. Q., Cui, Q., Wei, L., Huang, J. J., Ashby, C. R., Jr., & Chen, Z. S. (2020). Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resistance Updates, 48, 100663.

    Article  Google Scholar 

  • Obrador, A., González, D., Almendros, P., García-Gómez, C., & Fernández, M. D. (2021). Assessment of phytotoxicity and behavior of 1-year-aged Zn in soil from ZnO nanoparticles, bulk ZnO, and Zn sulfate in different soil plant cropping systems: From biofortification to toxicity. Journal of Soil Science and Plant Nutrition, 22, 150–164.

    Article  Google Scholar 

  • Palmer, C. M., & Guerinot, M. L. (2009). Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5, 333–340.

    Article  CAS  Google Scholar 

  • Pinto, M., Soaresa, C., Pinto, A. S., & Fidalgo, F. (2019). Phytotoxic effects of bulk and nano-sized Ni on Lycium barbarum L. grown in vitro – Oxidative damage and antioxidant response. Chemosphere, 218, 507–516.

    Article  CAS  Google Scholar 

  • Pradhan, S., Patra, P., Das, S., Chandra, S., Mitra, S., Dey, K. K., Akbar, S., Palit, P., & Goswami, A. (2013). Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environmental Science & Technology, 47(22), 13122–13131. https://doi.org/10.1021/es402659t

    Article  CAS  Google Scholar 

  • Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T., Sajanlal, P., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35, 905–927.

    Article  CAS  Google Scholar 

  • Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1–13. https://doi.org/10.3389/fmicb.2017.01014

    Article  Google Scholar 

  • Preetha, P. S., & Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil. International Journal of Current Microbiology and Applied Sciences, 6, 3117–3133.

    Article  Google Scholar 

  • Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7(2), 3325–3335.

    Article  Google Scholar 

  • Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research, 2(1), 48–57.

    Article  CAS  Google Scholar 

  • Raliya, R., Tarafdar, J., Singh, S., Gautam, R., Choudhary, K., Maurino, V. G., & Saharan, V. (2014). MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of clusterbean (Cyamopsis tetragonoloba L.). Advanced Science Engineering and Medicine, 6, 538–545.

    Article  CAS  Google Scholar 

  • Raliya, R., Biswas, P., & Tarafdar, J. C. (2015a). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports, 5, 22–26.

    Article  Google Scholar 

  • Raliya, R., Nair, R., Chavalmane, S., Wang, W. N., & Biswas, P. (2015b). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7, 1584–1594.

    Article  CAS  Google Scholar 

  • Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2018). Nanofertilizers for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry, 66, 6487–6503.

    Article  CAS  Google Scholar 

  • Rameshaiah, G. N., Pallavi, J., & Shabnam, S. (2015). Nano fertilizers and nano sensors an attempt for developing smart agriculture. International Journal of Engineering Research and Generic Sciences, 3, 314–320.

    Google Scholar 

  • Ramzan, S., Rasool, T., Bhat, R. A., Ahmad, P., Ashraf, I., Rashid, N., Ui Shafiq, M., & Mir, I. A. (2020). Agricultural soils a trigger to nitrous oxide: A persuasive greenhouse gas and its management. Environmental Monitoring and Assessment, 192, 436. https://doi.org/10.1007/s10661-020-08410-2

    Article  CAS  Google Scholar 

  • Ribeiro, C., & Carmo, M. (2019). Why nonconventional materials are answers for sustainable agriculture. MRS Energy & Sustainability, 6(1), E9. https://doi.org/10.1557/mre.2019.7

    Article  Google Scholar 

  • Rizwan, M., Ali, S., Zia ur Rehman, M., Riaz, M., Adrees, M., Hussain, A., Zahir, Z. A., & Rinklebe, J. (2021). Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicology and Environmental Safety, 221, 112437.

    Article  CAS  Google Scholar 

  • Rodríguez-Seijo, A., Soares, C., Ribeiro, S., Amil, B. F., Patinha, C., Cachada, A., Fidalgo, F., & Pereira, R. (2022). Nano-Fe2O3 as a tool to restore plant growth in contaminated soils – Assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. Journal of Hazardous Materials, 425, 127999.

    Article  Google Scholar 

  • Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160–166.

    Article  CAS  Google Scholar 

  • Roy, T., Biswas, D. R., Datta, S. C., Dwivedi, B. S., Bandyopadhyay, K. K., Sarkar, A., Agarwal, B. K., & Shahi, D. K. (2015). Solubilization of Purulia rock phosphate through organic acid loaded nanoclay polymer composite and phosphate solubilizing bacteria and its effectiveness as p-fertilizer to wheat. Journal of the Indian Society of Soil Science, 63(3), 327–338.

    Article  Google Scholar 

  • Roy, T., Biswas, D. R., Datta, S. C., et al. (2018a). Phosphorus release from rock phosphate as influenced by organic acid loaded nanoclay polymer composites in an Alfisol. Proceedings of the National Academy of Sciences, India, Section B Biological Sciences, 88, 121–132.

    Article  CAS  Google Scholar 

  • Roy, T., Biswas, D. R., Datta, S. C., Sarkar, A., & Biswas, S. S. (2018b). Citric acid loaded nano clay polymer composite for solubilization of Indian rock phosphates: A step towards sustainable and phosphorus secure future. Archives of Agronomy and Soil Science, 64(11), 1564–1581.

    Article  CAS  Google Scholar 

  • Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., & Zhu, S. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815.

    Article  Google Scholar 

  • Sarkar, A., Biswas, D. R., Datta, S. C., Roy, T., Moharana, P. C., Biswas, S. S., & Ghosh, A. (2018). Polymer coated novel controlled release rock phosphate formulations for improving phosphorus use efficiency by wheat in an Inceptisol. Soil and Tillage Research, 180, 48–62.

    Article  Google Scholar 

  • Sarkar, A., Biswas, D. R., Datta, S. C., et al. (2020). Synthesis of poly(vinyl alcohol) and liquid paraffin-based controlled release nitrogen-phosphorus formulations for improving phosphorus use efficiency in wheat. Journal of Soil Science and Plant Nutrition, 20, 1770–1784.

    Article  CAS  Google Scholar 

  • Sarkar, A., Biswas, D. R., Datta, S. C., Dwivedi, B. S., Bhattacharyya, R., Kumar, R., et al. (2021). Preparation of novel biodegradable starch/poly(vinyl alcohol)/bentonite grafted polymeric films for fertilizer encapsulation. Carbohydrate Polymers, 259, 117679.

    Article  CAS  Google Scholar 

  • Sarraf, M., Vishwakarma, K., Kumar, V., Arif, N., Das, S., Johnson, R., Janeeshma, E., Puthur, J. T., Aliniaeifard, S., Chauhan, D. K., et al. (2022). Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants, 11, 316.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2021). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants, 10(1), 2.

    Article  CAS  Google Scholar 

  • Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11, 1485.

    Article  Google Scholar 

  • Shalaby, T. A., Bayoumi, Y., Eid, Y., Elbasiouny, H., Elbehiry, F., Prokisch, J., El-Ramady, H., & Ling, W. (2022). Can Nanofertilizers mitigate multiple environmental stresses for higher crop productivity? Sustainability, 14, 3480.

    Article  CAS  Google Scholar 

  • Shang, Y., Hasan, M., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.

    Article  CAS  Google Scholar 

  • Sharma, G., Sharma, A. R., Bhavesh, R., Park, J., Ganbold, B., Nam, J. S., & Lee, S. S. (2014). Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules, 19(3), 2761–2770.

    Article  Google Scholar 

  • Shukla, Y. M. (2019). Nanofertilizers: A recent approach in crop production. In Nanotechnology for agriculture: Crop production & protection 2019 (pp. 25–58). Springer.

    Google Scholar 

  • Sidkey, N. M., Ismail, A. A., Arafa, R. A., & Fathy, R. M. (2016). Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. Journal of Chemical and Pharmaceutical Research, 8, 934–951.

    Google Scholar 

  • Singh, A., Sarkar, D. J., Mittal, S., Dhaka, R., Maiti, P., Singh, A., et al. (2018). Zeolite reinforced carboxymethyl cellulose-Na+ -g-cl -poly(AAm) hydrogel composites with pH responsive phosphate release behavior. Journal of Applied Polymer Science, 47332.

    Google Scholar 

  • Smil, V. (2002). Nitrogen and food production: Proteins for human diets. Ambio, 31, 126–131.

    Article  Google Scholar 

  • Solanki, P., Bhargava, A., Chhipa, H., Jain, N., & Panwar, J. (2015). Nano-fertilizers and their smart delivery system. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Nanotechnologies in food and agriculture. Springer.

    Google Scholar 

  • Soliman, A. S., Hassan, M., Abou-Elella, F., Ahmed, A. H., & El-Feky, S. A. (2016). Effect of nano and molecular phosphorus fertilizers on growth and chemical composition of baobab (Adansonia digitata L.). Journal of Plant Sciences, 11, 52–60.

    Article  CAS  Google Scholar 

  • Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. (2013). Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersican esculentum). Ecotoxicology and Environmental Safety, 93, 60–67.

    Article  CAS  Google Scholar 

  • Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hard Materials, 349, 101–110. https://doi.org/10.1016/j.jhazmat.2018.01.040

    Article  CAS  Google Scholar 

  • Tan, W., Du, W., Barrios, A. C., Armendariz, R., Jr., Zuverza-Mena, N., Ji, Z., Chang, C. H., Zink, J. I., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environmental Pollution, 222, 64–72.

    Article  CAS  Google Scholar 

  • Tarafdar, J. C., Raliya, R., & Rathore, I. (2012). Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. Journal of Bionanoscience, 6, 84–89. https://doi.org/10.1166/jbns.2012.1077

    Article  CAS  Google Scholar 

  • Taran, N. Y., Gonchar, O. M., Lopatko, K. G., Batsmanova, L. M., Patyka, M. V., & Volkogon, M. V. (2014). The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters, 9(1), 1–8. https://doi.org/10.1186/1556-276X-9-289

    Article  CAS  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  CAS  Google Scholar 

  • Tombuloglu, H., Slimani, Y., Tombuloglu, G., Almessiere, M., & Baykal, A. (2019). Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere, 226, 110–122.

    Article  CAS  Google Scholar 

  • Torabian, S., Zahedi, M., & Khoshgoftar, A. H. (2017). Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. Journal of Plant Nutrition, 40, 615–623.

    Article  CAS  Google Scholar 

  • United Nations. (2017). World population prospects: The 2017 revision, key findings and advance tables (Working Paper No. ESA/P/WP/248).

    Google Scholar 

  • Upadhyay, S. K., Rajput, V. D., Kumari, A., et al. (2022a). Plant growth-promoting rhizobacteria: A potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01433-3

  • Upadhyay, S. K., Srivastava, A. K., Rajput, V. D., Chauhan, P. K., Bhojiya, A. A., Jain, D., et al. (2022b). Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.916488

  • Ursache-Oprisan, M., Focanici, E., Creanga, D., & Caltun, O. (2011). Sunflower chlorophyll levels after magnetic nanoparticle supply. African Journal of Biotechnology, 10, 7092–7098.

    CAS  Google Scholar 

  • Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwari, M., Sharma, N., & Sahi, S. V. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with p supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127.

    Article  CAS  Google Scholar 

  • Verma, K. K., Song, X.-P., Joshi, A., Tian, D.-D., Rajput, V. D., Singh, M., Arora, J., Minkina, T., & Li, Y.-R. (2022). Recent trends in nano fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials, 12, 173.

    Article  CAS  Google Scholar 

  • Wang, Y., Deng, C., Cota-Ruiz, K., Peralta-Videa, J. R., Sun, Y., Rawat, S., Tan, W., Reyes, A., Hernandez-Viezcas, J. A., Niu, G., Li, C., & Gardea-Torresdey, J. L. (2020a). Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment, 725, 138387. https://doi.org/10.1016/j.scitotenv.2020.138387

    Article  CAS  Google Scholar 

  • Wang, W., Liu, J., Ren, Y., Zhang, L., Xue, Y., Zhang, L., & He, J. (2020b). Phytotoxicity assessment of copper oxide nanoparticles on the germination, early seedling growth, and physiological responses in Oryza sativa L. Bulletin of Environmental Contamination and Toxicology, 104, 770–777.

    Article  CAS  Google Scholar 

  • Xiumei, L., Fudao, Z., Shuqing, Z., Xusheng, H., Rufang, W., Zhaobin, F., & Yujun, W. (2005). Responses of peanut to nano-calcium carbonate. Plant Nutrition and Fertilizer Science, 11(3), 385–389.

    Google Scholar 

  • Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., & Wang, L. (2015). Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). International Journal of Environmental Research and Public Health, 12, 15100–15109.

    Article  CAS  Google Scholar 

  • Zhang, Q., Ying, Y., & Ping, J. (2022). Recent advances in plant nanoscience. Advancement of Science, 9, 2103414.

    CAS  Google Scholar 

  • Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Servin, A. D., Hong, J., & Niu, G. (2013). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. Journal of Agricultural and Food Chemistry, 61, 11945–11951.

    Article  CAS  Google Scholar 

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270. https://doi.org/10.1016/j.plantsci.2019.110270

    Article  CAS  Google Scholar 

  • Zuverza-Mena, N., Martínez-Fernández, D., Du, W., Hernandez-Viezcas, J. A., Bonilla-Bird, N., López-Moreno, M. L., Komárek, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses – A review. Plant Physiology and Biochemistry, 110, 236–264.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R. et al. (2023). Nanofertilizers in Agriculture: Futuristic Approach. In: Rajput, V.D., El-Ramady, H., Upadhyay, S.K., Minkina, T., Ahmed, B., Mandzhieva, S. (eds) Nano-Biofortification for Human and Environmental Health. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-031-35147-1_14

Download citation

Publish with us

Policies and ethics