Skip to main content

Polyphenols and the Mediterranean Diet. Chemistry, Sensorial Properties and Natural Sources

  • Chapter
  • First Online:
Polyphenols and the Mediterranean Diet

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

  • 421 Accesses

Abstract

The quality of food in terms of taste and nutritional value is primarily based on the composition. Plant-based foods contain phenols that may determine consumer’s acceptance of such foods. Besides their role in preventing the emergence of some diseases and in protecting our gut’s health, phenols play a cardinal role in shaping our perception of foods. In this specific ambit and during the last decade, many scientific researches have been revealing the health and nutritional benefits of polyphenols and have thus stimulated the creation and the development of a market niche linked to polyphenols. These molecules are mainly extracted from 12 vegetable matrices, including grape seeds, green tea, cocoa, olives (including fruit and oil) and coffee predominate. For these reasons, many of these food products are considered as ‘functional foods’. Interestingly, the Mediterranean Diet includes mainly foods of vegetable origin, many of which contain remarkable amounts and a wide variety of polyphenols. This chapter examines the consumers’ reaction to polyphenol-rich foods in terms of sensorial features, mainly flavours and colours. In addition, chemical properties and natural sources of phenolics have to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on the International Food Information Council (IFIC) ‘foods or dietary components that may provide a health benefit beyond basic nutrition’ Bagchi (2008).

  2. 2.

    Cocoa is not a mediterranean food; Cocoa has been quite recently introduced to the area and mainly in ultraprocessed forms.

  3. 3.

    An organic compound produced by plants to inhibit the attack by insects. It has an activity and a chemical structure similar to those of biopesticide.

  4. 4.

    Antimicrobial and antioxidant molecules that are synthesized by plants as part of their defence mechanism against pathogen attack.

  5. 5.

    This is a rare case, and the vast majority of olives have contents of oleuropein and derivatives that impair their consumption as a raw fruit; in olive oil, they are present in minor amounts and contribute to flavour (given they are polar and thus mostly eliminated in the water fraction); many different preparation of table olives include a debittering step.

  6. 6.

    On ultraprocessed foods: Fardet (2018).

Abbreviations

3,4-DHPEA-EDA:

3,4-dihydroxyphenylethanol-elenolic acid dialdehyde

CAGR:

Compound Annual Growth Rate

EFSA:

European Food Safety Authority

EVOO:

Extra virgin olive oil

IOC:

International Olive Council

Med Diet:

Mediterranean dietary food pattern

p-HPEA:

2-(4-hydroxyphenyl) ethanol

UNESCO:

United Nations Educational, Scientific and Cultural Organization

USD:

United States Dollar

UV:

Ultraviolet

VOO:

Virgin olive oil

References

  • Almeida MDV, Parisi S, Delgado AM (2017) Food and nutrient features of the Mediterranean Diet. In: Delgado AM, Almeida MDV, Parisi S (eds) Chemistry of the Mediterranean Diet. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-29370-7_2

    Chapter  Google Scholar 

  • Amiot MJ, Fleurit A, Mavheix JJ (1986) Importance and evolution of phenolic compounds in olive during growth and maturation. J Agric Food Chem 34(5):823–826. https://doi.org/10.1021/jf00071a014

    Article  CAS  Google Scholar 

  • Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, Serra-Majem L, Mediterranean Diet Foundation Expert Group (2011) Mediterranean Diet pyramid today. Sci Cult Updates. Publ Health Nutr 14(12A):2274–2284. https://doi.org/10.1017/s1368980011002515

    Article  Google Scholar 

  • Bagchi D (ed) (2008) Neutraceutical and functional food regulations. Elsevier, New York

    Google Scholar 

  • Bavaresco L, Pettegolli D, Cantu E, Fregoni M, Chiusa G, Trevisan M (1997) Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis 36(2):77–83

    CAS  Google Scholar 

  • Bhagat AR, Delgado AM, Issaoui M, Chammem N, Fiorino M, Pellerito A, Natalello S (2019) Review of the role of fluid dairy in delivery of polyphenolic compounds in the diet: chocolate milk, coffee beverages, Matcha green tea, and beyond. J AOAC Int 102(5):1365–1372. https://doi.org/10.5740/jaoacint.19-0129

    Article  CAS  PubMed  Google Scholar 

  • Boskou D (2017) Table olives: a vehicle for the delivery of bioactive compounds. J Exp Food Chem 3:123. https://doi.org/10.4172/2472-0542.1000123

    Article  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V, Fulcrand H, Brossaud F, Asselin C, Moutounet M (1998) Phenolic composition as related to red wine flavor. In: Waterhouse AL, Ebeler SE (eds) Chemistry of wine flavor. American Chemical Society, Washington DC, pp 124–141

    Chapter  Google Scholar 

  • Cory H, Passarelli S, Szeto J, Tamez M, Mattei J (2018) The role of polyphenols in human health and food systems: a mini-review. Front Nutr 5:87. https://doi.org/10.3389/fnut.2018.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozier A, Lean MEJ, McDonald MS, Black C (1997) Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45(3):590–595. https://doi.org/10.1021/jf960339y

    Article  CAS  Google Scholar 

  • Dabbou S, Issaoui M, Esposto S, Sifi S, Taticchi A, Servili M, Montedoro GF, Hammami M (2009) Cultivar and growing area effects on minor compounds of olive oil from autochthonous and European introduced cultivars in Tunisia. Eur J Lipids Sci Technol 89(8):1314–1325. https://doi.org/10.1002/jsfa.3588

    Article  CAS  Google Scholar 

  • Dabbou S, Chehab H, Brahmi F, Dabbou S, Esposto S, Selvaggini R, Taticchi A, Servili M, Montedoro GF, Hammam M (2010) Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions. Agric Water Man 97(5):763–768. https://doi.org/10.1016/j.agwat.2010.01.011

    Article  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892. https://doi.org/10.1089/ars.2012.4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Turco S, Basta G (2016) Can dietary polyphenols prevent the formation of toxic compounds from Maillard reaction? Curr Drug Metab 17(6):598–607

    Article  PubMed  Google Scholar 

  • Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72(6):1424-1435

    Article  CAS  PubMed  Google Scholar 

  • Duh PD, Yen GC, Yen WJ, Wang BS, Chang LW (2004) Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. J Agric Food Chem 52(26):8169–8176. https://doi.org/10.1021/jf0490551

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2011) Scientific opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), ‘anti-inflammatory properties’ (ID 1882), ‘contributes to the upper respiratory tract health’ (ID 3468), ‘can help to maintain a normal function of gastrointestinal tract’ (3779), and ‘contributes to body defences against external agents’ (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(4):2033–2058. https://doi.org/10.2903/j.efsa.2011

    Article  Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2012) Scientific Opinion on Dietary Reference Values for protein. EFSA J 10, 2:2557-2663. https://doi.org/10.2903/j.efsa.2012.2557

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2014) Scientific opinion on the modification of the authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/ 2006 following a request in accordance with Article 19 of Regulation (EC) No 1924/2006. EFSA J 12(5):3654–3667. https://doi.org/10.2903/j.efsa.2014.3654

    Article  CAS  Google Scholar 

  • Esti M, Cinquanta L, La Notte E (1998) Phenolic compounds in different olive varieties. J Agric Food Chem 46(1):32–35. https://doi.org/10.1021/jf970391+

    Article  CAS  PubMed  Google Scholar 

  • Fardet A (2018) Characterization of the degree of food processing in relation with its health potential and effects. Adv Food Nutr Res 85:79–129. https://doi.org/10.1016/bs.afnr.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  • Fardet A, Rock E (2019) Ultra-processed foods: a new holistic paradigm? Trends Food Sci Technol 93:174–184. https://doi.org/10.1016/j.tifs.2019.09.016

    Article  CAS  Google Scholar 

  • Food Navigator (2004) EU laws set to hamper growth in polyphenols market. www.foodnavigator.com, William Reed Business Media Ltd., Crawley. Available https://www.foodnavigator.com/Article/2004/01/06/EU-laws-set-to-hamper-growth-in-polyphenols-market. Accessed 23 Oct 2019

  • Gorzynik-Debicka M, Przychodzen P, Cappello F, Kuban-Jankowska A, Marino Gammazza A, Knap N, Kuban-Jankowska A, Wozniak M, Gorska-Ponikowska M (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19(3):686. https://doi.org/10.3390/ijms19030686

    Article  CAS  PubMed Central  Google Scholar 

  • Grand View Research (2019) Polyphenols market size, share & trends analysis report by product (grape seed, green tea, cocoa), by application (beverages, food, feed, dietary supplements, cosmetics), and segment forecasts, 2019–2025. Report ID: 978-1-68038-127-6. Grand View Research, San Francisco. www.grandviewresearch.com

  • IOC (2018) – COI/T.20/Doc. No 15 – Sensory analysis of olive oil – method for the organoleptic assessment of virgin olive oil. Available https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/. Accessed 07 Feb 2020

  • Issaoui M, Delgado A (2019) Olive oil properties from technological aspects to dietary and health claims. In: Fruit oils: chemistry and functionality. https://doi.org/10.1007/978-3-030-12473-1_4

    Chapter  Google Scholar 

  • Issaoui M, Ben Hassine K, Flamini G, Brahmi F, Chehab H, Ouni Y, Mechri B, Zarrouk M, Hammami M (2009) Discrimination of some Tunisian olive oil varieties according to their oxidative stability, volatiles compounds and chemometric analysis. J Food Lipids 16(2):164–186. https://doi.org/10.1111/j.1745-4522.2009.01139.x

    Article  CAS  Google Scholar 

  • Issaoui M, Flamini G, Brahmi F, Dabbou S, Ben Hassine K, Taamalli A, Chehab H, Zarrouk M, Hammami H (2010) Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chem 119(1):220–225. https://doi.org/10.1016/j.foodchem.2009.06.012

    Article  CAS  Google Scholar 

  • Issaoui M, Dabbou S, Mechri B, Nakbi A, Chehab H, Hammami M (2011) Fatty acid profile, sugar composition, and antioxidant compounds of table olives as affected by different treatments. Eur Food Res Technol 232(5):867–876. https://doi.org/10.1007/s00217-011-1455-3

    Article  CAS  Google Scholar 

  • Johnson HE, Amarillas C, Bzhelyansky A, Jennens M, Krepich S, Kuszak A, Monagas M, Parisi S, Reif K, Rimmer CA, Stewart J, Szpylka J, Tims MC, Van Breemen R, Zhao H, Coates SG (2018) Standard method performance requirements (SMPRs®) 2018.006: determination of select flavonoids from skullcap. J AOAC Int 101(4):1261–1265. https://doi.org/10.5740/jaoacint.smpr2018.006

    Article  CAS  PubMed  Google Scholar 

  • Juríková T, Mlček J, Sochor J, Hegedűsová A (2015) Polyphenols and their mechanism of action in allergic immune response. Glob J Allergy 1(2):037–039. https://doi.org/10.17352/2455-8141.000008

    Article  Google Scholar 

  • Kiehne A, Engelhardt U (1996) Thermospray LC-MS analysis of various groups of polyphenols in tea. II: chlorogenic acids, theaflavins and thearubigins. Z Leibenm Unters Forsch 202(4):299–302. https://doi.org/10.1007/bf01206100

    Article  CAS  Google Scholar 

  • Kuhlmann J, Anderson W, Bandong G, Bratinova S, Burger D, Cook JM, Cruijsen H, De Dominicis E, de Vreeze M, Ehling S, Empl AM, Evers J, Gude T, Hanlon P, Jaudzems G, Koesukwiwat U, Lesueur C, MacMahon S, Manti V, Mastovska K, Mikkelsen A, Myers R, Paolillo P, Parisi S, Pinkston JD, Rankin R, Reuther J, Romano J, Schulz C, Stanley G, Stephenson C, Sullivan D, Szpylka J, Tennyson S, van Leeuwen S, Yadlapalli S, Yeung J, Nestle (2018) Standard method performance requirements (SMPRs®) 2017.017: determination of 2- and 3-MCPD, 2- and 3-MCPD esters, and glycidyl esters in infant and adult/pediatric nutritional formula. J AOAC Int 101(1):324–326. https://doi.org/10.5740/jaoacint.smpr2017.017

    Article  Google Scholar 

  • Kumar V, Sharma A, Kohli SK, Bali S, Sharma M, Kumar R, Bhardwaj R, Thukral AK (2019) Differential distribution of polyphenols in plants using multivariate techniques. Biotechnol Res Innov 3(1):1–21. https://doi.org/10.1016/j.biori.2019.03.001

    Article  Google Scholar 

  • Laaksonen O, Kuldjärv R, Paalme T, Virkki M, Yang B (2017) Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem 233:29–37. https://doi.org/10.1016/j.foodchem.2017.04.067

    Article  CAS  PubMed  Google Scholar 

  • Laganà P, Avventuroso E, Romano G, Gioffré ME, Patanè P, Parisi S, Delia S (2017a) Classification and technological purposes of food additives: the European point of view. In: Chemistry and hygiene of food additives. Springer International Publishing, Cham

    Google Scholar 

  • Laganà P, Avventuroso E, Romano G, Gioffré ME, Patanè P, Parisi S, Delia S (2017b) The codex alimentarius and the European legislation on food additives. In: Chemistry and hygiene of food additives. Springer International Publishing, Cham

    Google Scholar 

  • Laganà P, Avventuroso E, Romano G, Gioffré ME, Patanè P, Parisi S, Delia S (2017c) Food additives and effects on the microbial ecology in yoghurts. In: Chemistry and hygiene of food additives. Springer International Publishing, Cham

    Google Scholar 

  • Laganà P, Avventuroso E, Romano G, Gioffré ME, Patanè P, Parisi S, Delia S (2017d) Use and overuse of food additives in edible products: health consequences for consumers. In: Chemistry and hygiene of food additives. Springer International Publishing, Cham

    Google Scholar 

  • Laganà P, Campanella G, Patanè P, Assunta Cava M, Parisi S, Gambuzza ME, Delia S, Coniglio MA (2019a) Food gases: classification and allowed uses. In: Chemistry and hygiene of food gases. Springer International Publishing, Cham

    Google Scholar 

  • Laganà P, Campanella G, Patanè P, Assunta Cava M, Parisi S, Gambuzza ME, Delia S, Coniglio MA (2019b) Food gases in the european union. The legislation. In: Chemistry and hygiene of food gases. Springer International Publishing, Cham

    Book  Google Scholar 

  • Laganà P, Campanella G, Patanè P, Assunta Cava M, Parisi S, Gambuzza ME, Delia S, Coniglio MA (2019c) Food gases in the industry. Chemical and physical features. In: Chemistry and hygiene of food gases. Springer International Publishing, Cham

    Book  Google Scholar 

  • Laganà P, Campanella G, Patanè P, Assunta Cava M, Parisi S, Gambuzza ME, Delia S, Coniglio MA (2019d) Safety evaluation and assessment of gases for food applications. In: Chemistry and hygiene of food gases. Springer International Publishing, Cham

    Book  Google Scholar 

  • Lodovici M, Guglielmi F, Meoni M, Dolara P (2001) Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 39(12):1205–1210. https://doi.org/10.1016/s0278-6915(01)00067-9

    Article  CAS  PubMed  Google Scholar 

  • Lombardo S, Pandino G, Mauromicale G, Knödler M, Carle R, Schieber A (2010) Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem 119(3):1175–1181. https://doi.org/10.1016/j.foodchem.2009.08.033

    Article  CAS  Google Scholar 

  • Lombardo S, Pandino G, Ierna A, Mauromicale G (2012) Variation of polyphenols in a germplasm collection of globe artichoke. Food Res Int 46(2):544–551. https://doi.org/10.1016/j.foodres.2011.06.047

    Article  CAS  Google Scholar 

  • Mayr U, Treutter C, Santos-Buelga C, Bauer H, Feucht W (1995) Developmental changes in the phenol concentrations of ‘golden delicious’ apple fruits and leaves. Phytochem 38(5):1151–1155. https://doi.org/10.1016/0031-9422(94)00760-Q

    Article  CAS  Google Scholar 

  • Melliou E, Zweigenbaum JA, Mitchell AE (2015) Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in California-style black ripe olives and dry salt-cured olives. J Agric Food Chem 63(9):2400–2405. https://doi.org/10.1021/jf506367e

    Article  CAS  PubMed  Google Scholar 

  • Mennen LI, Walker R, Bennetau-Pelissero C, Scalbert A (2005) Risks and safety of polyphenol consumption. Am J Clin Nutr 81(1):326S–329S. https://doi.org/10.1093/ajcn/81.1.326s

    Article  CAS  PubMed  Google Scholar 

  • Moulehi I, Soumaya Bourgou S, Ourghemmi I, Saidani Tounsi M (2012) Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Ind Crops Prod 39:74–80. https://doi.org/10.1016/j.indcrop.2012.02.013

    Article  CAS  Google Scholar 

  • Oey SB, van der Fels-Klerx HJ, Fogliano V, van Leeuwen SP (2019) Mitigation strategies for the reduction of 2-and 3-MCPD esters and glycidyl esters in the vegetable oil processing industry. Compr Rev Food Sci Food Saf 18(2):349–361. https://doi.org/10.1111/1541-4337.12415

    Article  CAS  PubMed  Google Scholar 

  • Panickar KS, Anderson RA (2011) Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int J Mol Sci 12(11):8181–8207. https://doi.org/10.3390/ijms12118181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parisi S (2016) Min Hu and Charlotte Jacobsen (eds): Oxidative stability and shelf life of foods containing oils and fats. Anal Bioanal Chem 408(27):7549–7550. https://doi.org/10.1007/s00216-016-9875-3

    Article  CAS  Google Scholar 

  • Parisi S (2018) Analytical approaches and safety evaluation strategies for antibiotics and antimicrobial agents in food products. Chem Biol Solutions J AOAC Int 101(4):914–915. https://doi.org/10.5740/jaoacint.17-0444

    Article  CAS  Google Scholar 

  • Parisi S (2019) Analysis of major phenolic compounds in foods and their health effects. J AOAC Int 102(5):1354–1355. https://doi.org/10.5740/jaoacint.19-0127

    Article  CAS  PubMed  Google Scholar 

  • Parisi S (2020) Characterization of major phenolic compounds in selected foods by the technological and health promotion viewpoints. J AOAC (in press)

    Google Scholar 

  • Parisi S, Luo W (2018a) Chemistry of Maillard reactions in processed foods. In: The importance of Maillard reaction in processed foods. Springer International Publishing, Heidelberg, Germany

    Google Scholar 

  • Parisi S, Luo W (2018b) Maillard reaction in processed foods—reaction mechanisms. In: The importance of Maillard reaction in processed foods. Springer International Publishing, Heidelberg, Germany

    Google Scholar 

  • Parisi S, Luo W (2018c) Maillard reaction and processed foods—main chemical products. In: The importance of Maillard reaction in processed foods. Springer International Publishing, Heidelberg, Germany

    Google Scholar 

  • Popping B, Allred L, Bourdichon F, Brunner K, Diaz-Amigo C, Galan-Malo P, Lacorn M, North J, Parisi S, Rogers A, Sealy-Voyksner J, Thompson T, Yeung J (2018) Stakeholders’ guidance document for consumer analytical devices with a focus on gluten and food allergens. J AOAC 101(1):1–5. https://doi.org/10.5740/jaoacint.17-0425

    Article  CAS  Google Scholar 

  • Rigacci S, Stefani M (2016) Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci. 17(6):843. https://doi.org/10.3390/ijms17060843

    Article  CAS  PubMed Central  Google Scholar 

  • Robbins RJ (2003) Phenolic acid in foods: an overview of analytical methodology. J Agric Food Chem 51(10):2866–2887. https://doi.org/10.1021/jf026182

    Article  CAS  PubMed  Google Scholar 

  • Romero C, Brenes M, Yousfi K, Garcia P, García A, Garcia A (2004) Effect of cultivar and processing method on the contents of polyphenols in table olives. J Agric Food Chem 52(3):479–484. https://doi.org/10.1021/jf030525l

    Article  CAS  PubMed  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Ann Rev Nutr 22(1):19–34. https://doi.org/10.1146/annurev.nutr.22.111401.144957

    Article  CAS  Google Scholar 

  • Ryan D, Robards K, Lavee S (1999) Changes in phenolic content of olive during maturation. Int J Food Sci Technol 34(3):265–274. https://doi.org/10.1046/j.1365-2621.1999.00261.x

    Article  CAS  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S. https://doi.org/10.1093/jn/130.8.2073s

    Article  CAS  PubMed  Google Scholar 

  • Shoji T (2007) Polyphenols as natural food pigments: changes during food processing. Am J Food Technol 2(7):570–581. https://doi.org/10.3923/ajft.2007.570.581

    Article  Google Scholar 

  • Singla RK, Dubey AK, Ameen SM, Montalto S, Parisi S (2018a) Analytical methods for the determination of Maillard reaction products in foods. An introduction. In: Analytical methods for the assessment of Maillard reactions in foods. Springer International Publishing, Heidelberg, Germany

    Chapter  Google Scholar 

  • Singla RK, Dubey AK, Ameen SM, Montalto S, Parisi S (2018b) The control of Maillard reaction in processed foods. Analytical testing methods for the determination of 5-hydroxymethylfurfural. In: Analytical methods for the assessment of Maillard reactions in foods. Springer International Publishing, Heidelberg, Germany

    Chapter  Google Scholar 

  • Singla RK, Dubey AK, Ameen SM, Montalto S, Parisi S (2018c) Analytical methods for the determination of furosine in food products. In: Analytical methods for the assessment of Maillard reactions in foods. Springer International Publishing, Heidelberg, Germany

    Chapter  Google Scholar 

  • Singla RK, Dubey AK, Ameen SM, Montalto S, Parisi S (2018d) The analytical evaluation of acrylamide in foods as a Maillard reaction product. In: Analytical methods for the assessment of Maillard reactions in foods. Springer International Publishing, Heidelberg, Germany

    Chapter  Google Scholar 

  • Singla RK, Dubey AK, Ameen SM, Montalto S, Parisi S (2018e) Melanoidins and browning reactions in processed foods. Quantitative determinations, colour measurement, and sensorial assessment. In: Analytical methods for the assessment of Maillard reactions in foods. Springer International Publishing, Heidelberg, Germany

    Chapter  Google Scholar 

  • Soleas GJ, Diamandis OEP, Goldberg DM (1997) Resveratrol: a molecule whose time has come? and gone? Clin Biochem 30(2):91–113. https://doi.org/10.1016/s0009-9120(96)00155-5

    Article  CAS  PubMed  Google Scholar 

  • Steinka I, Barone C, Parisi S, Micali M (2017a) Antibiotic-resistant staphylococci isolated from hermetically packaged frozen vegetables. In: The chemistry of frozen vegetables. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  • Steinka I, Barone C, Parisi S, Micali M (2017b) Technology and chemical features of frozen vegetables. In: The chemistry of frozen vegetables. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  • Steinka I, Barone C, Parisi S, Micali M (2017c) Instrumental systems for the control of frozen vegetables during refrigeration. In: The chemistry of frozen vegetables. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  • Steinka I, Barone C, Parisi S, Micali M (2017d) Colorimetric modifications in frozen vegetables. In: The chemistry of frozen vegetables. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  • Tomaino A, Martorana M, Arcoraci T, Monteleone D, Giovinazzo C, Saija A (2010) Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochim 92(9):1115–1122. https://doi.org/10.1016/j.biochi.2010.03.027

    Article  CAS  Google Scholar 

  • UNESCO (2019) Mediterranean Diet—Cyprus, Croatia, Spain, Greece, Italy, Morocco and Portugal inscribed in 2013 (8.COM) on the representative list of the intangible cultural heritage of humanity. United Nations Educational, Scientific and Cultural Organization (UNESCO)—Living Heritage Entity, Paris, https://ich.unesco.org. Available https://ich.unesco.org/en/RL/mediterranean-diet-00884. Accessed 25 Oct 2019

  • Zugravu C, Otelea MR (2019) Dark chocolate: to eat or not to eat? A review. J AOAC Int 102(5):1388–1396. https://doi.org/10.5740/jaoacint.19-0132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Issaoui .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Issaoui, M., Delgado, A.M., Iommi, C., Chammem, N. (2020). Polyphenols and the Mediterranean Diet. Chemistry, Sensorial Properties and Natural Sources. In: Polyphenols and the Mediterranean Diet. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-41134-3_1

Download citation

Publish with us

Policies and ethics