Skip to main content
Log in

Fatty acid profile, sugar composition, and antioxidant compounds of table olives as affected by different treatments

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The influence of cultivar and processing on olive antioxidants, fatty acids, and sugars profiles were studied for the autochthonous Meski and two introduced table olives (Picholine and Manzanella). Olive fruits were treated with two traditional Tunisian processes. Fatty acid analysis by capillary gas chromatography, total phenols and o-diphenols, and sugars profiles by GC and GC–MS, together with oxidative capacity, were evaluated. Independently of the processing method, the olive fruit showed significant cultivar dependant differences. Concerning the effect of processing, ANOVA tests showed no significant difference in the fatty acid profiles, whereas sugars and phenols underwent a sharp decrease during the fruit storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Soni MG, Burdock GA, Christian MS, Bitler CM, Crea R (2006) Food Chem Toxicol 44:903–915

    Article  CAS  Google Scholar 

  2. Wiesman Z (2009) Desert olive oil production, Advanced Bio Technologies. Eds. 1, pp 1–391

  3. IOOC (International Olive Oil Council) (2005) Production of table olives. IOOC, Madrid, Spain

    Google Scholar 

  4. Sabatini N, Perri E, Marsilio V (2009) Innov Food Sci Emerg Technol 10:621–626

    Article  CAS  Google Scholar 

  5. Bianchi G (2003) Eur J Lipid Sci Technol 105:229–242

    Article  CAS  Google Scholar 

  6. Lanza B, Di Serio MG, Iannucci E, Russi F, Marfisi P (2010) Int J Food Sci Technol 45:67–74

    CAS  Google Scholar 

  7. Bianco A, Uccella N (2000) Food Res Inter 33:475–485

    Article  CAS  Google Scholar 

  8. Marsilio V, Campestre C, Lanza B (2001) Food Chem 74:55–60

    Article  CAS  Google Scholar 

  9. Bendini A, Cerretani L, Carrasco-Pancorbo A, Gomez-Caravaca A, Segura-Carretero A, Fernandez-Gutierrez A, Lercker G (2007) Molecules 12:1679–1719

    Article  CAS  Google Scholar 

  10. Tapiero H, Tew KD, Nguyen Ba G, Mathe G (2002) Biomed Pharmaco 56:200–207

    Article  CAS  Google Scholar 

  11. Massaro M, De Caterina R (2002) Nutr Metab Cardiovasc Dis 12:42–51

    CAS  Google Scholar 

  12. Kratz M, Cullen P, Kannenberg F, Kassner A, Fobker M, Abuja PM, Assmann G, Wahrburg U (2002) Eur J Clin Nutr 56:72–81

    Article  CAS  Google Scholar 

  13. Moreno JJ, Mitjavilab MT (2003) J Nutr Biochem 14(4):182–195

    Article  CAS  Google Scholar 

  14. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M (2005) Nutr Res Rev 18:98–112

    Article  CAS  Google Scholar 

  15. Msallem M, Hellali R (2000) Ezzzitouna 6:59–73

    Google Scholar 

  16. Dabbou S, Issaoui M, Servili M, Taticchi A, Sifi S, Montedoro GF, Hammami M (2009) Eur J Lipid Sci Technol 111:392–401

    Article  CAS  Google Scholar 

  17. Dabbou S, Issaoui M, Esposto S, Sifi S, Taticchi A, Servili M, Montedoro GF, Hammami M (2009) J Sci Food Agric 89:1314–1325

    Article  CAS  Google Scholar 

  18. Therios I (2009) Crop production science in horticulture. Biddles Ltd, King’s Lynn, UK, pp 1–426

    Google Scholar 

  19. Romero C, Brenes M, Yousfi K, Garcia P, Garcia A, Garrido A (2004) J Agric Food Chem 52:479–484

    Article  CAS  Google Scholar 

  20. Boskou D (2009) Olive oil minor constituents and health. CRC Press, Taylor and Francis group Boca Raton London New York, pp 1–246

    Google Scholar 

  21. Boskou D (1996) Olive oil chemistry and technology. AOCS Press, Champaign, IL, pp 52–83

    Google Scholar 

  22. EUC (1991) European Union Commission Regulation 2568/91, characteristics of olive and olive pomace oils and their analytical methods. Off J Eur Commun L248:1–82

    Google Scholar 

  23. Issaoui M, Dabbou S, Echbili A, Rjiba I, Gazzah N, Trigui A, Hammami M (2007) J Food Agric Environ 5:17–21

    CAS  Google Scholar 

  24. Minguez-Mosquera MI, Rejano L, Gandul B, Sanchez AH, Garrido J (1991) J Am Oil Chem Soc 68:332–336

    Article  CAS  Google Scholar 

  25. Montedoro GF, Servili M, Baldioli M, Minati E (1992) J Agric Food Chem 40:1571–1576

    Article  CAS  Google Scholar 

  26. Tura D, Gigliotti C, Pedo S, Failla O, Bassi D, Serraiocco A (2007) Sci Hortic 112:108–119

    Article  CAS  Google Scholar 

  27. Allen C, Good P (1971) In: Clowic SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 523–547

    Google Scholar 

  28. Mechri B, Issaoui M, Echbili A, Chehab H, Mariem FB, Braham F, Hammami M (2009) J Hazardous Materials 172:1544–1550

    Article  CAS  Google Scholar 

  29. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  30. Tayfun Agar I, Hess-Pierce BM, Sourour MA, Kader A (1999) Postharvest Biol Technol 15:53–64

    Article  CAS  Google Scholar 

  31. Arroyo-López FN, Bautista-Gallego J, Durán-Quintana MC, Rodríguez-Gómez F, Romero-Barranco C, Garrido-Fernández A (2008) J Food Eng 89:479–487

    Article  Google Scholar 

  32. Skevin D, Rade D, Strucelj D, Mokrovcak Z, Nederal S, Bencic D (2003) Eur J Lipid Sci Technol 105:536–541

    Article  CAS  Google Scholar 

  33. Malheiro R, Sousa A, Casal S, Bento A, Pereira JA (2011) Food Chem Toxicology 49:450–457

    Article  CAS  Google Scholar 

  34. Morello JR, Romero MP, Motilva MJ (2004) J Agric Food Chem 52(19):6002–6009

    Article  CAS  Google Scholar 

  35. Gutierrez F, Villafranca MJ, Castellano JM (2002) J Food Sci 67:943–947

    Article  Google Scholar 

  36. Boskou D (2006) Trend Food Sci Technol 17:505–512

    Article  Google Scholar 

  37. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) J Nutr 133:2812–2819

    CAS  Google Scholar 

  38. Vinha A, Ferreres F, Silva B, Valentao P, Goncalves A, Pereira J et al (2005) Food Chem 89:561–568

    Article  CAS  Google Scholar 

  39. Rietjens SJ, Bast A, Haenen GRMM (2007) J Agric Food Chem 55:7609–7614

    Article  CAS  Google Scholar 

  40. Pereira Caro G, Madrona A, Bravo L, Esparetro JL, Alcudia F, Cert A, Mateos R (2009) Food Chem 115:86–91

    Article  CAS  Google Scholar 

  41. Gozales-Santiago M, Fonollà J, Lopez-Huertas E (2010) Pharmacol Res 61:364–370

    Article  Google Scholar 

  42. Funes L, Fernandez-Arroyo S, Laporta O, Pons A, Roche E, Segura-Carretero A, Fernandez-Gutiérrez A, Micol V (2009) Food Chem 117:589–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique; UR03ES08 “Nutrition Humaine et Désordres Métaboliques”. Part of this work was carried out at the Dipartimento di Scienze degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Italia. We would like to thank Pr. Maurizio Servili and Dr. Agnese Taticchi for their help and advice in analysis and Dr. Rachel Décor for editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hammami.

Additional information

M. Issaoui and S. Dabbou contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issaoui, M., Dabbou, S., Mechri, B. et al. Fatty acid profile, sugar composition, and antioxidant compounds of table olives as affected by different treatments. Eur Food Res Technol 232, 867–876 (2011). https://doi.org/10.1007/s00217-011-1455-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1455-3

Keywords

Navigation