Skip to main content

Analytical Methods for the Determination of Furosine in Food Products

  • Chapter
  • First Online:
Analytical Methods for the Assessment of Maillard Reactions in Foods

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

Abstract

The importance of Maillard reaction products is correlated with two main problems concerning the production and the commercialisation of foods and beverages: the loss of nutritional properties caused by Maillard reaction under drastic conditions and/or the possible risk caused by the presence of one or more Maillard reaction products in foods. The ‘Maillard reaction’ is a complex group of cascade reactions; parallel reaction chains may also cross themselves with interesting and perhaps unpredictable results. The final products are brownish polymers named melanoidins with notable molecular weights and variegated composition and structures. These polymers could not be obtained without the active role of several intermediates including 5-hydroxymethylfurfural, diacetyl, pyruvaldehyde, furosine. In particular, furosine has been studied thoroughly in the last 40 years because of its correlation with heat treatments and thermal effects on proteins. This chapter is dedicated to furosine and related analytical methods concerning food matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CZE:

Capillary zone electrophoresis

HMF:

5-Hydroxymethylfurfural

MRP:

Maillard reaction product

RP-HPLC:

Reverse-phase high-performance liquid chromatography

SPE:

Solid phase extraction

References

  • Arena S, Renzone G, D’Ambrosio C, Salzano AM, Scaloni A (2017) Dairy products and the Maillard reaction: a promising future for extensive food characterization by integrated proteomics studies. Food Chem 219:477–489. https://doi.org/10.1016/j.foodchem.2016.09.165

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer, Berlin

    Google Scholar 

  • Boitz LI, Mayer HK (2015) Evaluation of furosine, lactulose and acid-soluble β-lactoglobulin as time temperature integrators for whipping cream samples at retail in Austria. Int Dairy J 50:24–31. https://doi.org/10.1016/j.idairyj.2015.06.002

    Article  CAS  Google Scholar 

  • Bogdanov S, Martin P (2002) Honey authenticity. Mitt Lebensm Hyg 93(3):232–254

    CAS  Google Scholar 

  • Bogdanov S, Martin P, Lüllmann C, Borneck R, Flamini C, Morlot M, Heretier J, Vorwohl G, Russmann H, Persano-Oddo L, Saba-tini AG, Marcazzan GL, Marioleas P, Tsigouri K, Kerkvliet J, Ortiz A, Ivanov T (1997) Harmonised methods of the European Honey Commission, Apidologie (extra issue), 1–59

    Google Scholar 

  • Bornhorst ER, Tang J, Sablani SS, Barbosa-Cánovas GV (2017) Development of model food systems for thermal pasteurization applications based on Maillard reaction products. LWT-Food Sci Technol 75:417–424. https://doi.org/10.1016/j.lwt.2016.09.020

    Article  CAS  Google Scholar 

  • Cappelli P, Vannucchi V (1990) Chimica degli alimenti. Conservazione e trasformazione. Zanichelli, Bologna

    Google Scholar 

  • Castro-Puyana M, Crego AL, Marina ML, García-Ruiz C (2007) CE methods for the determination of non-protein amino acids in foods. Electrophoresis 28(22):4031–4045. https://doi.org/10.1002/elps.200700169

    Article  CAS  Google Scholar 

  • Chhabra GS, Liu C, Su M, Venkatachalam M, Roux KH, Sathe SK (2017) Effects of the Maillard reaction on the immunoreactivity of amandin in food matrices. J Food Sci 82(10):2495–2503. https://doi.org/10.1111/1750-3841.13839

    Article  CAS  Google Scholar 

  • Coles R, Kirwan MJ (2011) Food and beverage packaging technology, 2nd edn. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Corradini D, Cannarsa G, Corradini C, Nicoletti I, Pizzoferrato L, Vivanti V (1996) Analysis of ε-N-2-furoylmethyl-L-lysine (furosine) in dried milk by capillary electrophoresis with controlled electroosmotic flow using N, N, N′, N′-tetramethyl-1, 3-butanediamine in the running electrolyte solution. Electrophoresis 17(1):120–124. https://doi.org/10.1002/elps.1150170120

    Article  CAS  Google Scholar 

  • Corzo-Martínez M, Corzo N, Villamiel M, del Castillo MD (2012) Browning reactions. In: Simpson BK (ed) Food biochemistry and food processing, 2nd edn, pp 56–83. https://doi.org/10.1002/9781118308035.ch4

  • da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323. https://doi.org/10.1016/j.foodchem.2015.09.051

    Article  Google Scholar 

  • Delgado-Andrade C, Rufiàn-Henares J, Morales F (2005) Fast method to determine furosine in breakfast cereals by capillary zone electrophoresis. Eur Food Res Technol 221(5):707–711. https://doi.org/10.1007/s00217-005-0030-1

  • Delgado-Andrade C, Rufiàn-Henares J, Morales FJ (2009) Colour and fluorescence measurement as unspecific markers for the Maillard reaction. In: Proceedings of the COST-927 Action Training School “Assessing the generation and bioactivity of neo-formed compounds in thermally treated foods”, Granada, Spain, 9–13 March 2009. Available http://www.if.csic.es/proyectos/cost927/TS-COST927-GRANADA-Tuesday.pdf. Accessed 08 Nov 2017

  • Dills WL (1993) Protein fructosylation: fructose and the Maillard reaction. Am J Clin Nutr 58(5):779S–787S

    Article  CAS  Google Scholar 

  • Erbersdobler HF, Hupe A (1991) Determination of the lysine damage and calculation of lysine bio-availability in several processed foods. Z Ernährungswissenschaft 30(1):46–49

    Article  CAS  Google Scholar 

  • Erbersdobler HF, Dehn-Müller B, Nangpal A, Reuter H (1987) Determination of furosine in heated milk as a measure of heated intensity during processing. Dairy Res 54(1):147–151. https://doi.org/10.1017/S0022029900025255

    Article  CAS  Google Scholar 

  • Feather MS, Mossine V, Hirsch J (1995) The use of aminoguanidine to trap and measure decarbonyl intermediates produced during the Maillard reaction. In: Lee TC, Kim HJ (eds) Chemical Markers for Processed and Stored Foods, ACS Symposium Series 631, Chicago, pp. 24–31. https://doi.org/10.1021/bk-1996-0631.ch003

  • Finot PA, Deutsch R, Bujard E (1981) The extent of the Maillard reaction during the processing of milk. Progr Food Nutr Sci 5:345–355

    CAS  Google Scholar 

  • Fiorino M, Parisi S (2016) Undesired chemical alterations and process-related causes. The role of thermal control and the management of thermal machines. In: Micali M, Fiorino M, Parisi S (eds) The chemistry of thermal food processing procedures, pp 41–54. Springer International Publishing, Cham

    Google Scholar 

  • Friedman M (1996) Food Browning and Its Prevention:  An Overview. Journal of Agricultural and Food Chemistry 44(3):631–653

    Google Scholar 

  • Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW (1994) Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 43(5):676–683. https://doi.org/10.2337/diab.43.5.676

    Article  CAS  Google Scholar 

  • Gartaula G, Adhikari BM (2014) Challenges and prospects of food science and technology education: Nepal’s perspective. Food Sci Nutr 2(6):623–627. https://doi.org/10.1002/fsn3.173

    Article  Google Scholar 

  • Ghiron AF, Quack B, Mahinney TP, Feather MS (1988) Studies on the role of 3-deoxy-d-erythro-glucosulose (3-glucosone)in nonenzymatic browning. Evidence for involvement in a Strecker degradation. J Agric Food Chem 36(4):677–680. https://doi.org/10.1021/jf00082a002

    Article  CAS  Google Scholar 

  • Giannetti V (2013) Furosine as a pasta quality marker. Tecnica Molitoria 12:1076–1088

    Google Scholar 

  • Giannetti V, Mariani MB, Mannino P (2013) Furosine as a pasta quality marker: evaluation by an innovative and fast chromatographic approach. J Food Science 78(7):C994–C999. https://doi.org/10.1111/1750-3841.12163

    Article  CAS  Google Scholar 

  • Guerra-Hernández E, Corzo N, Garcia-Villanova B (1999) Maillard reaction evaluation by furosine determination during infant cereal processing. J Cereal Sci 29(2):171–176. https://doi.org/10.1006/jcrs.1998.0226

    Article  Google Scholar 

  • Henle T, Schwarzenbolz U, Walter AW, Klosterrneyer H (1998) Protein-bound Maillard compounds in foods: analytical and technological aspects. In: O’ Brien J, Nursten HE, Crabbe MJC, Ames JM (eds) The Maillard reaction in foods and medicine, Special Publication No 223. The Royas Society of Chemistry, London

    Google Scholar 

  • Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1(15):928–943. https://doi.org/10.1021/jf60015a004

    Article  CAS  Google Scholar 

  • Huber B, Ledl F (1990) Formation of 1-amino-1,4- dideoxy-2,3-hexodiulose and 2-aminoacetylfurans in the Maillard reaction. Carbohydr Res 204:215–220. https://doi.org/10.1016/0008-6215(90)84037-u

    Article  CAS  Google Scholar 

  • Huyghues-Despointes A, Yaylayan VA (1996) Retroaldol and redox reactions of Amadori compounds: mechanistic studies with various labeled D-[13C] glucose. J Agric Food Chem 44(3):672–681. https://doi.org/10.1021/jf9502921

    Article  CAS  Google Scholar 

  • Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc Lond B Biol Sci 365(1554):2793–2807. https://doi.org/10.1098/rstb.2010.0149

    Article  Google Scholar 

  • Maillard LC (1912) Action des acidesamines sur les sucres: formation des melanoidines par voie methodique. Compt Rend Acad Sci (Paris) 154:66–68

    CAS  Google Scholar 

  • Mania I, Barone C, Pellerito A, Laganà P, Parisi S (2017) Trasparenza e Valorizzazione delle Produzioni Alimentari. ’etichettatura e la Tracciabilità di Filiera come Strumenti di Tutela delle Produzioni Alimentari. Ind Aliment 56(581):18–22

    Google Scholar 

  • Marcus N (2016) The Maillard Reaction: Radicals and Flavor. Group presentation (date: 22th march 2016), Department of Chemistry, University of Illinois. http://www.scs.illinois.edu/denmark/wp-content/uploads/2016/03/Marcus.pdf. Accessed 02th November 2017

  • Markowicz Bastos D, Monaro E, Siguemoto E, Séfora M (2012) Maillard reaction products in processed food: pros and cons. In: Valdez B (ed) Food industrial processes—methods and equipment. InTech, Rijeka. https://doi.org/10.5772/31925. Available https://www.intechopen.com/books/food-industrial-processes-methods-and-equipment/maillard-reaction-products-in-processed-food-pros-and-cons. Accessed 07 Nov 2017

  • Martins SIFS, Jongen WMF, van Boekel MAJS (2001) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11(9–10):364–373. https://doi.org/10.1016/s0924-2244(01)00022-x

    Google Scholar 

  • Mathlouthi M (1994) Food packaging and preservation. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • McWeeny DJ, Knowels ME, Hearne JF (1974) The chemistry of non-enzymic browning and its control by sulphites. J Sci Food Agric 25(6):735–746. https://doi.org/10.1002/jsfa.2740250616

  • Morales FJ (2008) Hydroxymethylfurfural (HMF) and related com-pounds. In: Stadler RH and Lineback DR (eds) Process-induced food toxicants: occurrence, formation, mitigation, and health risks. Wiley, Hoboken. https://doi.org/10.1002/9780470430101.ch2e

  • Morales V, Sanz ML, Martín-Álvarez PJ, Corzo N (2009) Combined use of HMF and furosine to assess fresh honey quality. J Sci Food Agric 89(8):1332–1338. https://doi.org/10.1002/jsfa.3590

    Article  CAS  Google Scholar 

  • Parisi S (2017) Antimicrobials in foods today and the role of chitosan—current hopes and new perspectives. Glob Drugs Therap 2(2):1–2. https://doi.org/10.15761/GDT.1000114

    Article  Google Scholar 

  • Pastoriza S, Rufián-Henares JÁ, García-Villanova B, Guerra-Hernández E (2016) Evolution of the Maillard reaction in glutamine or arginine-dextrinomaltose model systems. Foods 5(4):86. https://doi.org/10.3390/foods5040086

    Article  Google Scholar 

  • Perra F, Porcu M, Sanjust MT, Spanedda L (2002) Determinazione della furosina in prodotti lattiero-caseari ovini. Riv Sci Aliment 31(2):165–178

    CAS  Google Scholar 

  • Resmini P, Pellegrino L, Cattaneo S (2003) Furosine and other heat-treatment indicators for detecting fraud in milk and milk products. Ital J Food Sci 15(4):473–484

    CAS  Google Scholar 

  • Rufián-Henares JA, Delgado-Andrade C, Morales FJ (2009) Assessing the Maillard reaction development during the toasting process of common flours employed by the cereal products industry. Food Chem 114, 1:93–99. https://doi.org/10.1016/j.foodchem.2008.09.021

  • Sharma RK, Parisi S (2017) Aflatoxins in Indian food products. In: Sharma RK, Parisi S (eds) Toxins and contaminants in Indian food products. Springer International Publishing AG, Cham. https://doi.org/10.1007/978-3-319-48049-7_2

  • Schmidt A, Boitz LI, Mayer HK (2016) A new UHPLC method for the quantitation of furosine as heat load indicator in commercial liquid milk. J Food Compos Anal 56:104–109. https://doi.org/10.1016/j.jfca.2016.12.014

    Article  Google Scholar 

  • Soria AC, Villamiel M (2012) Non‐enzymatic browning in cookies, crackers and breakfast cereals. In: Simpson BK (ed) Food biochemistry and food processing, 2nd edn, pp 584–593. https://doi.org/10.1002/9781118308035.ch30

  • Sun DW (ed) (2016) Handbook of frozen food processing and packaging. CRC Press, Boca Raton. https://doi.org/10.1201/9781420027402

  • Tirelli A, Pellegrino L (1995) Determination of furosine in dairy products by capillary zone electrophoresis: a comparison with the HPLC method. Ital J Food Sci 7(4):379–385

    CAS  Google Scholar 

  • Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A (2013) Quality characterization of artisanal and retail Turkish blossom honeys: determination of physico-chemical, microbiological, bioactive properties and aroma profile. Ind Crop Prod 46:124–131. https://doi.org/10.1016/j.indcrop.2012.12.042

    Article  CAS  Google Scholar 

  • Tressl R, Nittka C, Kersten E (1995) Formation of Isoleucine-specific Maillard Products from [1-13C]-d-glucose and [1-13C]-d-fructose. J Agric Food Chem 43(5):1163–1169. https://doi.org/10.1021/jf00053a009

    Article  CAS  Google Scholar 

  • Van Boekel MAJS (1998) Effect of heating on Maillard reactions in milk. Food Chem 62(4):403–414. https://doi.org/10.1016/S0308-8146(98)00075-2

    Article  Google Scholar 

  • Van Boekel MAJS, Brands C (1998) Heating of sugarcasein solutions: isomerization and Maillard reactions. In: O’Brien J, Nursten HE, Crabbe MJC, Ames JM (eds) The Maillard reaction in foods and medicine. Royal Society of Chemistry, Cambridge, pp 154–158

    Google Scholar 

  • Velásquez Cifuentes NF (2013) Evaluación de diferentes tiempos de calentamiento de la miel de abeja (Apis mellifera) para retardar su cristalización y determinar los niveles de HMF (Hidroximetil Furfural), en la asociación de apicultores del sur occidente de Guatemala. Dissertation, Universidad de San Carlos de Guatemala

    Google Scholar 

  • Vhangani LN, Van Wyk J (2016) Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chem 208:301–308. https://doi.org/10.1016/j.foodchem.2016.03.100

    Article  CAS  Google Scholar 

  • Wilkinson C, Dijksterhuis GB, Minekus M (2000) From food structure to texture. Trends Food Sci Technol 11(12):442–450. https://doi.org/10.1016/s0924-2244(01)00033-4

    Article  CAS  Google Scholar 

  • Yada RY, Bryksa B, Nip WK (2012) An introduction to food biochemistry. In: Simpson BK (ed) Food biochemistry and food processing, 2nd edn, pp 1–25. https://doi.org/10.1002/9781118308035.ch1

  • Zaccheo A, Palmaccio E, Venable M, Locarnini-Sciaroni I, Parisi S (2017) The complex relationships between humans, food, water, and hygiene. In: Zaccheo A, Palmaccio E, Venable M, Locarnini-Sciaroni I, Parisi S (eds) Food hygiene and applied food microbiology in an anthropological cross cultural perspective. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-44975-3_1

  • Zardetto S, Dalla Rosa M, Di Fresco S (2003) Effects of different heat treatment on the furosine content in fresh filata pasta. Food Res Int 36(9–10):877–883. https://doi.org/10.1016/S0963-9969(03)00096-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Singla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singla, R.K., Dubey, A.K., Ameen, S.M., Montalto, S., Parisi, S. (2018). Analytical Methods for the Determination of Furosine in Food Products. In: Analytical Methods for the Assessment of Maillard Reactions in Foods. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-76923-3_3

Download citation

Publish with us

Policies and ethics