Skip to main content

Biochars and Its Implications on Soil Health and Crop Productivity in Semi-Arid Environment

  • Chapter
  • First Online:
Biochar Applications in Agriculture and Environment Management
  • 1283 Accesses

Abstract

Land degradation and climate change are important associated processes necessitating appropriate management options to solve alarming food security threats in developing nations. Biochar produced from plant matter and applied to the soil has become increasingly recognized to address multiple contemporary concerns, such as agricultural productivity and contaminated ecosystem amelioration, primarily by removing carbon dioxide from the atmosphere and improving soil health. Biochar is an anaerobic pyrolysis product derived from organic material, resistant to easy degradation and stored carbon in the long-term in the terrestrial ecosystem and capable of reducing greenhouse emission from soil to the atmosphere. Further, it has the potential to adsorb and degrade heavy metals accumulated in the industrial and contaminant sites. The different source of biochars and graded levels of application has positive and negative effects on crop yield under different soil types. Most of the results in biochar are a greenhouse and laboratory-based experiment and lack of field experimental evidence in the semiarid environment. In this chapter need for biochar production, characterization, soil health changes, environmental clean-up potential, and crop yield dynamics under changing climate and research on biochar in the near future will be focused on sustainable crop and environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS (2012) Effects of soil dilution and amendments (mussel shell, cow bone and biochar) on Pb availability and hytotoxicity in military shooting range soil. Ecotoxicol Environ Saf 79:225–231

    Article  CAS  Google Scholar 

  • Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl 118:13–26

    Article  Google Scholar 

  • Berek AK, Hue N, Ahmad A (2011) Beneficial use of biochar to correct soil acidity. Food Provider Hanai Ai 9:1–3

    Google Scholar 

  • Berihun T, Tolosa S, Tadele M, Kebede F (2017) Effect of biochar application on growth of garden pea (Pisum sativum L.) in acidic soils of Bule Woreda Gedeo Zone Southern Ethiopia. Int J Agron 2017:6827323

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson- Prentice Hall, Upper Saddle River, p 990

    Google Scholar 

  • Brown R (2009) Biochar production technology. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 127–139

    Google Scholar 

  • Bruun E, Muller-Stover D, Ambus P, Hauggaard-Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62(4):581–589

    Article  CAS  Google Scholar 

  • Bryan E, Deressa TT, Gbetibouo GA, Ringler C (2009) Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ Sci Pol 12:413–426

    Article  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chan KY, Zwieten VL, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chen D (2018) Effects of biochar on availability and plant uptake of heavy metals – a meta-analysis. J Environ Manag 222:76–85

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Thies J, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Chia CH, Downie A, Munroe P (2015) Biochar for environmental management: science, technology, and implementation. Routledge, Abingdon, pp 89–110

    Google Scholar 

  • Choppala GK, Bolan NS, Megharaj M, Chen Z, Naidu R (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184

    Article  CAS  Google Scholar 

  • De Gryze S, Cullen M, Durschinger L, Lehmann J, Bluhm D (2010) Evaluation of the opportunities for generating carbon offsets from soil sequestration of biochar. In: Lehmann J, et al (eds) An issues paper commissioned by the Climate Action Reserve, final version. Climate Action Reserve

    Google Scholar 

  • Demirbas A, Gonenc A (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482

    Article  CAS  Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana-A review. Renew Sust Energ Rev 15(8):3539–3551

    Article  Google Scholar 

  • Ericksen PJ, Ingram JSI, Liverman DM (2009) Food security and global environmental change: emerging challenges. Environ Sci Pol 2:373–377

    Article  Google Scholar 

  • Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1297

    Article  CAS  Google Scholar 

  • Fernandez-Lopez M, Marisa C, Almeida R, Pereira C, Iolanda Ribeiro L (2015) Life cycle assessment of swine and dairy manure: Pyrolysis and combustion processes. Bioresour Technol 182:184–192

    Article  CAS  Google Scholar 

  • Freibauer A, Rounsevell MA, Smith P, Verhagen A (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122(1):1–23

    Article  CAS  Google Scholar 

  • Fresco LO (2009) Challenges for food system adaptation today and tomorrow. Environ Sci Pol 12:378–385

    Article  Google Scholar 

  • Gan C, Liu Y, Tan X, Wang S, Zeng G, Zheng B, Li T, Jiang Z, Liu W (2015) Effect of porous zinc-biochar nano composites on Cr (VI) adsorption from aqueous solution. RSC Adv 5(44):35107–35115

    Article  CAS  Google Scholar 

  • Gaunt JL, Cowie AL (2009) Biochar, greenhouse gas accounting, and emissions trading. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 317–340

    Google Scholar 

  • Genesio L, Miglietta F, Baronti S, Vaccari FP (2015) Biochar increases vineyard productivity without affecting grape quality: results from a four years field experiment in Tuscany. Agric Ecosyst Environ 201:20–35

    Article  Google Scholar 

  • Han G, Lan J, Chen Q, Yu C, Bie S (2017) Response of soil microbial community to application of biochar in cotton soils with different continuous cropping years. Sci Rep 7:10184

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    Article  CAS  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on the production and nutrient properties of wastewater sludge biochar. J Environ Manag 92(1):223–228

    Article  CAS  Google Scholar 

  • Huang XX, Liu YG, Liu SB, Tan XF, Ding Y, Zeng GM, Zhou YY, Zhang MM, Wang SF, Zheng BH (2016) Effective removal of Cr (VI) using b-cyclo dextrine chitosan modified biochars with sorption/reduction bifunctional roles. RSC Adv 6:94

    Article  CAS  Google Scholar 

  • Hussain Z, Khan N, Ullah S, Liaqat A, Nawaz F, Khalil AUR, Ali Shah J, Junaid M, Ali M (2017) Response of mung bean to various levels of biochar, farmyard manure and nitrogen. World J Agric Sci 13(1):26–33

    CAS  Google Scholar 

  • International Biochar Initiative(2008) Biochar sustainability and security in a changing climate. IBI conference, Newcastle, United Kingdom, September 8–10, 2008

    Google Scholar 

  • Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X (2011) Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Sep Sci Technol 46(12):1950–1956

    Article  CAS  Google Scholar 

  • Jiang J, Xu R, Jiang T, Li Z (2012) Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229–230:145–150

    Article  CAS  Google Scholar 

  • Kannan P, Ponmani S, Prabukumar G, Swaminathan C (2016) Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch Agron Soil Sci 6:1293–1310

    Google Scholar 

  • Katterer T, Roobroeck D, Andren O, Kimutai G, Karltun E, Kirchmann H, Nyberg G, Vanlauwe B, deNowina KR (2019) Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crop Res 235:18–26

    Article  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  • Kimetu J, Lehmann J, Ngoze S, Mugendi D, Kinyangi J, Riha S, Verchot L, Recha J, Pell A (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Koomen E, Kuhlman T, Groen J, Bouwman A (2005) Simulating the future of agricultural land use in the Netherlands. Tijdschr Econ Soc Ge 96:218–224

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari et al (eds) Prospects of renewable bioprocessing in future energy systems, biofuel and biorefinery technologies. Springer, Cham, pp 1–50

    Google Scholar 

  • Kumar A, Singh JS (2017) Cyanoremediation: A green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol (2) managing environmental pollution. Springer, Cham, pp 59–83

    Chapter  Google Scholar 

  • Kumar A, Kaushal S, Saraf S, Singh JS (2017) Cyanobacterial biotechnology: an opportunity for sustainable industrial production. Clim Change Environ Sustain 5(1):97–110

    Article  Google Scholar 

  • Kumar A, Kaushal S, Saraf S, Singh JS (2018) Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosci (Landmark) 23:1789–1802

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Google Scholar 

  • Lal R (2004) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosyst 70(2):103–116

    Article  CAS  Google Scholar 

  • Lal R (2010) Managing soils for warming earth in a food-insecure and energy-starved world. J Plant Nutr Soil Sci 173:4–15

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J (2009) Biological carbon sequestration must and can be a win-win approach. Clim Chang 97(3):459–463

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Lehmann J, Rondon M (2006) Biochar soil management on highly weathered soils in the humid tropics. In: Uphoff N et al (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in the terrestrial ecosystems-a review. Mitig Adapt Strat Glob Change 11(2):395–419

    Article  Google Scholar 

  • Lehmann J, Matthias R, Janice T, Caroline M, William H, David C (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Lin XW, Zie ZB, Zheng JY, Liu Q, Bei QC, Zhu JG (2015) Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur J Soil Sci 66:329–338

    Article  CAS  Google Scholar 

  • Liu Z, Zhang FS (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167(1):933–939

    Article  CAS  Google Scholar 

  • Liu P, Ptacek CJ, Blowes DW, Landis RC (2016) Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy. J Hazard Mater 308:233–242

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules. Geoderma 142(1):1–10

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehman J (2010) Maize yield and nutrition for 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Matthews JA (2008) Carbon negative biofuels. Energy Policy 36:940–945

    Article  Google Scholar 

  • McCarl BA, Peacocke C, Chrisman R, Kung CC, Sands R (2009) Economics of biochar production, utilization and greenhouse gas offsets. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 341–357

    Google Scholar 

  • McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty, and risk. Agric Ecosyst Environ 129:1–7

    Article  CAS  Google Scholar 

  • Mendez A, Paz-Ferreiro J, Araujo F, Gasco G (2014) Biochar from pyrolysis of de-inking paper sludge and its use in the treatment of a nickel polluted soil. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2014.02.001

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R, Zimmerman AR (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36

    Article  CAS  Google Scholar 

  • Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). J Aust Soil Res 48:638–647

    Article  CAS  Google Scholar 

  • Noguera D, Rondon M, Laossi KR, Hoyos V, Lavelle P, de Carvalho MHC, Barot S (2010) Contrasted effect of biochar and earthworm on rice growth and resource allocation in different soils. Soil Biol Biochem 42:1017–1027

    Article  CAS  Google Scholar 

  • Oya A, Iu WG (2002) Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon 40(9):3891–3899

    Article  Google Scholar 

  • Park J, Choppala H, Lee GH, Bolan SJ, Chung JW, Edraki M (2013) Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soil. Water Air Soil Pollut 224:1711. https://doi.org/10.1007/s11270-013-1711-1

    Article  CAS  Google Scholar 

  • Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang J, Gidarakos E (2012) Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manag 96(1):35–42

    Article  CAS  Google Scholar 

  • Purakayastha TJ (2010) Effect of biochar on the yield of different crops. IARI. Annual Report 2010-11, Indian Agricultural Research Institute, New Delhi, p 55

    Google Scholar 

  • Qiu Y, Cheng H, Xu C, Sheng SD (2008) Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption. Water Res 42(3):567–574

    Article  CAS  Google Scholar 

  • Quayle W (2010) Biochar potential for soil improvement and soil fertility. IREC Farm Newsl 182:22–24

    Google Scholar 

  • Reichenauer TG, Panamulla S, Subasinghe S, Wimmer B (2009) Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka. Environ Geochem Health 31:573–579

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez A, Hurtado M (2004) Charcoal additions to high fertility ditches enhance yields and quality of cash crops in the Andean hillsides of Colombia. CIAT Annual Report 2004, Cali, Colombia

    Google Scholar 

  • Shackley S, Sohi S, Haszeldine S, Manning D, Masek O (2009) Biochar, reducing and removing CO2 while improving soils: a significant and sustainable response to climate change

    Google Scholar 

  • Shafie S, Mohd Salleh MA, Lau Lek Hang M (2012) Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J Purity Util React Environ 1(6):293–307

    CAS  Google Scholar 

  • Shang G, Shen G, Wang T, Chen Q (2012) Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar. J Air Waste Manage Assoc 62(8):873–879

    Article  CAS  Google Scholar 

  • Simon S, Wiegmann K (2009) Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries. Biomass Bioenergy 33:603–609

    Article  Google Scholar 

  • Singh JS (2013) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1(1):20–24

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015) Biodiversity: current perspective. Clim Change Environ Sustain 3(1):71–72

    Article  Google Scholar 

  • Singh JS (2016) Microbes play major roles in ecosystem services. Clim Change Environ Sustain 3:163–167

    Article  Google Scholar 

  • Singh JS (ed) (2019) New and future developments in microbial biotechnology and bioengineering: microbes in soil, crop and environmental sustainability. Elsevier, Amsterdam

    Google Scholar 

  • Singh JS, Boudh S (2016) Climate change resilient crops to sustain Indian agriculture. Clim Change Environ Sustain 5:97–110

    Google Scholar 

  • Singh JS, Singh DP (eds) (2019) New and future developments in microbial biotechnology and bioengineering: microbial biotechnology in agro-environmental sustainability. Elsevier, United States

    Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie A, Kathuria A (2010a) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010b) Characterization and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525

    Article  CAS  Google Scholar 

  • Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol-2: managing environmental pollution. Springer, Cham, pp 123–146

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Boudh S, Singh JS (2017b) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol (2) managing environmental pollution. Springer, Cham, pp 123–145

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017c) Impact of rice husk biochar on nitrogen mineralization and methanotrophs community dynamics in paddy soil. Int J Pure Appl Biosci 5(5):428–435

    Article  Google Scholar 

  • Singh JS, Koushal S, Kumar A, Vimal SR, Gupta VK (2017d) Book review: microbial inoculants in sustainable agricultural productivity- Vol II: Functional application. Front Microbiol 7:2015

    Article  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017e) Application of biochar in soil fertility and environmental management: a review. Bull Environ Pharmacol Life Sci 6(12):07–14

    CAS  Google Scholar 

  • Singh C, Tiwari S, Gupta VK, Singh JS (2018) The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena 171:485–493

    Article  CAS  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2019) Biochar: a sustainable tool in soil 2 pollutant bioremediation. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Dordrecht, pp 475–494

    Google Scholar 

  • Singh JS, Kumar A, Singh M (2019a) Cyanobacteria: a sustainable and commercial bioresource in production of bio-fertilizer and bio-fuel from waste waters. Environ Sustain Indic 3–4:100008

    Google Scholar 

  • Singh MK, Rai PK, Rai A, Singh S, Singh JS (2019b) Poly-β-hydroxybutyrate production by the cyanobacterium Scytonema geitleri Bharadwaja under varying environmental conditions. Biomolecules 9(198):1–10

    Google Scholar 

  • Spokas K, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77(4):574–581

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira W, Lehmann J, Nehls T, de Macedo J, Blum W, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garcia M, Forster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  CAS  Google Scholar 

  • Suppadit T, Kitikoon V, Phubphol A, Neumnoi P (2012) Effect of quail litter biochar on the productivity of four new physic nut varieties planted in cadmium-contaminated soil. Chilean J Agric Res 72:125–132

    Article  Google Scholar 

  • Taghizadeh-Toosi A et al (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40(2):468–476

    Article  CAS  Google Scholar 

  • Tiwari AP, Singh JS (2017) Plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 8(7233):73–79

    CAS  Google Scholar 

  • Tiwari S, Singh C, Singh JS (2018) Land use changes: a key ecological driver regulating methanotrophs abundance in upland soils. Energy Ecol Environ 3(6):355–371

    Article  Google Scholar 

  • Tiwari S, Singh C, Boudh S, Rai PK, Gupta VK, Singh JS (2019a) Land use change: a key ecological disturbance declines soil microbial biomass in dry tropical uplands. J Environ Manag 242:1–10

    Article  CAS  Google Scholar 

  • Tiwari S, Singh C, Singh JS (2019b) Wetlands: a major natural source responsible for methane emission. In: Upadhyay AK et al (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore, pp 59–74

    Google Scholar 

  • Tong X, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu (II) by biochars generated from three crop straws. Chem Eng J 172(2):828–834

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58(9):5538–5544

    Article  CAS  Google Scholar 

  • Van Zwieten L, Singh BP, Joseph S, Kimber S, Cowie A, Chan KY (2009) Biochar and emissions of non-CO2 greenhouse gases from the soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 227–249

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils: a critical scientific review of effects on soil properties. Processes and Functions, European Commission Joint Research Centre for Scientific and Technical reports 51–68

    Google Scholar 

  • Vimal SR, Singh JS (2019) salt tolerant pgpr and fym application in saline soil paddy agriculture sustainability. Clim Change Environ Sustain 7(1):23–33

    Google Scholar 

  • Vimal SR, Gupta J, Singh JS (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res 9(1):1–14

    Article  CAS  Google Scholar 

  • Vitkova J, Kondrlova E, Rodny M, Surda P, Horak J (2017) Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ 63(12):569–573

    Article  CAS  Google Scholar 

  • Wang C, Deng H, Zhao F (2015) The remediation of chromium (VI)-contaminated soils using microbial fuel cells. Soil Sedim Contamin 1:1–12

    Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil e concepts and mechanisms. Plant Soil 300:920

    Article  CAS  Google Scholar 

  • Woolf D (2008) Biochar as a soil amendment: a review of the environmental implications of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the total of green waste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Google Scholar 

  • Xu C, Chen H, Xiang Q, Zhu H, Wang S, Zhu Q, Huang D, Zhang YZ (2017) Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil–rice system. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0495

  • Xue Y et al (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J 200:673–680

    Article  CAS  Google Scholar 

  • Yaghoubi P, Reddy KR (2011) Characteristics of biochar-amended soil cover for landfill gas mitigation. Pan-Am CGS Geotechnical Conference, 2011

    Google Scholar 

  • Yan LL, Kong L, Qu Z, Li L, Shen GQ (2015) Magnetic biochar decorated with ZnS nano crytals for Pb (II) removal. ACS Sustain Chem Eng 3:125–132

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang Y, Wei Z, Zhang X, Chen X, Yue D, Yin Q, Xiao L, Yang L (2014) Biochar from Alternanthera philoxeroides could remove Pb (II) efficiently. Bioresour Technol 171:227–232

    Article  CAS  Google Scholar 

  • Yang Q, Han F, Chen Y, Yang H, Chen H (2016) Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renew Sust Energ Rev 53:1580–1590

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76(5):665–671

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

  • Zackrisson O, Nilsson MC, Wardle DA (1996) The key ecological function of charcoal from wild fire in the Boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139(4):469–475

    Article  CAS  Google Scholar 

  • Zhang W, Mao S, Chen H, Huang L, Qiu R (2013) Pb (II) and Cr (VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour Technol 147:545–552

    Article  CAS  Google Scholar 

  • Zhou JB, Deng CJ, Chen JL, Zhang QS (2008) Remediation effects of cotton stalk carbon on cadmium (Cd) contaminated the soil. Ecol Environ 17:1857–1860

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannan, P., Krishnaveni, D., Ponmani, S. (2020). Biochars and Its Implications on Soil Health and Crop Productivity in Semi-Arid Environment. In: Singh, J., Singh, C. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham. https://doi.org/10.1007/978-3-030-40997-5_5

Download citation

Publish with us

Policies and ethics