Skip to main content

Biochar Application in Management of Paddy Crop Production and Methane Mitigation

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Paddy agriculture is one of the major anthropogenic sources of methane (CH4) emission at global level. A decrease in CH4 release in the atmosphere from paddy fields can add significantly to the management of global warming and climate change. Biochar production and application in agriculture prepared from crop straw has been proposed as one of the effective countermeasure to mitigate the greenhouse gas emissions (GHGs) during farming. Biochar, a co-product of a controlled pyrolysis process, can be used as a tool to offset GHGs emissions and as a soil conditioner. Biochar application increased rice productivity, soil pH, soil organic carbon, total N but decreased soil bulk density in the long term. Recent studies have confirmed that the use of biochar in paddy agriculture has the capability to minimise the CH4 production, but its essential mechanism has yet to be clarified. The additions of biochar to the agriculture soil showed higher CH4 consumption because it improves soil aeration and porosity and enhances methanotrophs performance. However, further investigations are needed to evaluate the effect of biochar addition on net CH4 emissions and consumptions, respectively, by methanogens and methanotrophs. Long-term experiments should be conducted to monitor any changes over the years on the influence of biochar amendments on soil–methanotrophs–paddy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah H, Wu HW (2009) Biochar as a fuel: properties and grindability of biochars produced from the pyrolysis of Mallee wood under slow-heating conditions. Eng Fuels 23:4174–4181

    Article  CAS  Google Scholar 

  • Agegnehu G, Bass AM, Nelson PN, Muirhead B, Wright G, Michael I (2015) Bird biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric Ecosyst Environ 213:72–85

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Bailey VL, Fansler SJ, Smith JL, Bolton JH (2010) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301

    Article  Google Scholar 

  • Ball PN, MacKenzie MD, DeLuca TH, Holben WE (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacteria abundance in dry montane forest soils. J Environ Qual 39:1243–1253

    Article  CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582

    Article  CAS  Google Scholar 

  • Bosse U, Frenzel P (1997) Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Appl Environ Microbiol 63:1199–1207

    CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Carriera M, Hardieb AG, Urasa U, Gorgensa J, Knoetze JH (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32

    Article  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biochem Cycles 2:299–327

    Article  CAS  Google Scholar 

  • Conrad R (1999) Soil microorganisms oxidizing atmospheric trace gasses (CH4, CO, H2, NO). Ind J Microbiol 39:193–203

    Google Scholar 

  • Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Aus J Bot 56:369–407

    Article  CAS  Google Scholar 

  • Dannenberg S, Conrad R (1999) Effect of rice plant on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45:53–71

    Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Conver Manag 42:1357–1378

    Article  CAS  Google Scholar 

  • Demisie W, Zhang M (2015) Effect of biochar application on microbial biomass and enzymatic activities in red soil. African J Agric Res 10:755–766

    Article  CAS  Google Scholar 

  • Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W (2013) Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J Soil Sediment 13:1450–1460

    Article  CAS  Google Scholar 

  • Dubey SK (2011) Methane emission and rice agriculture. Curr Sci 81:345–346

    Google Scholar 

  • EPA (2010) Methane and nitrous oxide emission from natural sources. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Eykelbosh AJ, Johnson MS, Queiroz ESD, Dalmagro HJ, Couto EG (2014) Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. PLoS One 9:98523

    Article  Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Frenzel P, Therbrath B, Conrad R (1990) Oxidation of methane in the toxic surface layer of deep lake sediment (Lake Constance). FEMS Microbiol Ecol 73:149–158

    Article  CAS  Google Scholar 

  • Gaunt JL, Johannes L (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:11–4152

    Article  Google Scholar 

  • Ghoneim AM, Ebid AI (2013) Impact of rice-straw biochar on some selected soil properties and rice (Oryza sativa L.) grain yield. Int J Agron Agric Res 3:14–22

    Google Scholar 

  • Giri DD, Kumar A, Sahu PK, Mishra PK, Pandey KD (2014) Temperature dependent decline in soil methane oxidizing bacterial population in tropical dry deciduous forest ecosystems. Int J Sci Technol Res 3:2277–8616

    Google Scholar 

  • Graef C, Hestnes AG, Svenning MM, Frenzel P (2011) The active methanotrophic community in a wetland from the high arctic. Environ Microbiol Rep 3:466–472

    Article  CAS  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Han B, Chen Y, Abell Y, Jiang H, Bodrossy L, Zhao J, Murrel JC, Xing X (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coalmine. FEMS Microbiol Ecol 70:196–207

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Hmid A, Mondelli D, Fiore S, Fanizzi FP, Ziad Al C, Dumontet S (2014) Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioener 71:330–339

    Article  CAS  Google Scholar 

  • Houghton JT, Filho LGM, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (1995) Radiative forcing of climate change. In: van der Linden PJ, Hanson CE (eds) Climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hutsch BW (2001) Methane oxidation, nitrification, and counts of methanotrophic bacteria in soils from a long-term fertilization experiment (‘Ewiger Roggenbau’ at Halle). J Plant Nutr 164:21–28

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2001) The science of climate change In: Climate change 2001. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Climate change 2007: climate change and environmental sustainability. Cambridge University Press, New York, pp 433–497

    Chapter  Google Scholar 

  • Ishii T, Kadoya K (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Jpn Soc Hortic Sci 63:529–535

    Article  CAS  Google Scholar 

  • Jang I, Lee S, Hong JH, Kang H (2006) Methane oxidation rates in forest soils and their controlling variables: a review and a case study in Korea. Ecol Res 21:849–854

    Article  CAS  Google Scholar 

  • Jien SH, Wang CS (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225–233

    Article  CAS  Google Scholar 

  • Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA (2012) Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol 110:396–404

    Article  CAS  Google Scholar 

  • Johannes L (2007) Bio-energy in the black. Front Ecol Environ:5–7

    Google Scholar 

  • Jouiada M, Al-Nofeli N, Khalifa N, Benyettouc F, Yousef LF (2015) Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm. J Anal Appl Pyrolysis 111:183–190

    Article  Google Scholar 

  • Karhu K, Mattila T, Bergstrom I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Brab M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  Google Scholar 

  • Khalil MAK, Rasmussen RA (1994) Global emissions of methane during the last several centuries. Chemosphere 29:833–842

    Article  CAS  Google Scholar 

  • Khan ST, Mubeen U (2012) Wheat straw: a pragmatic overview. Curr Res J Biol Sci 4:673–675

    CAS  Google Scholar 

  • Kim SS, Agblevor FA, Lim J (2009) Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. J Ind Eng Chem 15:247–252

    Article  CAS  Google Scholar 

  • King GM (1997) Responses of atmospheric methane consumption by soils to global climate change. Glob Chang Biol 3:351–362

    Article  Google Scholar 

  • Krause S, Ke CL, Frenzel P (2010) Succession of methanotrophs in oxygen–methane counter-gradients of flooded rice paddies. Int Soc Microb Ecol J4:1603–1607

    Google Scholar 

  • Lai W-Y, Lai C-M, Ke G-R, Chung R-S, Chen C-T, Cheng C-H, Pai C-W, Chen S-Y, Chen C-C (2013) The effect of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emission from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng 44:1039–1044

    Article  CAS  Google Scholar 

  • Laird DA (2008) The Charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. J Agron

    Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management an introduction. ES-BEM-16:17–23

    Google Scholar 

  • Li YL, Wang XX (2013) Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant and Soil 36:115–126

    Article  Google Scholar 

  • Liu S, Li Y, Wu J, Huang D, Su Y, Wei W (2010) Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical China. Soil Sci Plant Nutr 56:693–704

    Article  CAS  Google Scholar 

  • Liu YX, Yang M, Wu YM, Wang HL, Chen YX, Wu WX (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soil Sediment 11:930–939

    Article  CAS  Google Scholar 

  • Ludmila C, Julia A, Rudoyk RS, Toms M, Lidstrom E (1998) G transfer enzymes and coenzymes were linking methylotrophic bacteria and methanogenic archaea. J Sci 281:99–101

    Article  Google Scholar 

  • Luke C, Bodrossy L, Lupotto E, Frenzel P (2011) Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. Environ Microbiol Rep 3:518–525

    Article  Google Scholar 

  • Mahinpey N, Murugan P, Mani T, Raina R (2009) Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuel 23:2736–2742

    Article  CAS  Google Scholar 

  • Masulili A, Utomo WH (2010) Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and Its Influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J Agric Sci 2:1

    Google Scholar 

  • McLaughlin S, Walsh M (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioener 14:317–324

    Article  CAS  Google Scholar 

  • Mer JL, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Meyer S, Glaser B, Quicker P (2011) Technical, economical and climate related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483

    Article  CAS  Google Scholar 

  • Milla OV, Rivera EB, Huang WJ, Chien CC, Wang YM (2013) Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J Soil Sci Plant Nutr 13:251–266

    Google Scholar 

  • Mohammed IY, Abakr YA, Kazi FK, Yusuf S, Alshareef I, Chi SA (2015) Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product fields and characteristic. Bio Res 10:6457–6478

    CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313–339

    Article  Google Scholar 

  • Mukherjee A, Lal R, Zimmerman AR (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36

    Article  CAS  Google Scholar 

  • Neue NU (1993) Methane emission from rice fields. Bioscience 43:466–474

    Article  Google Scholar 

  • Pan GX, Zhou P, Li ZP, Smith P, Li LQ, Qiu DS, Zhang XH, Xu XB, Shen SY, Chen XM (2009) Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric Ecosyst Environ 131:274–280

    Article  CAS  Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11:241–250

    Article  CAS  Google Scholar 

  • Peter W (2007) Biochar and bioenergy production for climate change mitigation. New Zealand Sci Rev 64

  • Phillips R, Whalen SC, Schlesinger WH (2001) Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Glob Chang Biol 7:557–563

    Article  Google Scholar 

  • Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9:86388

    Article  Google Scholar 

  • Reddy KR, Asce F, Yargicoglu EN, Asce SM, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 11:1090–0241

    Google Scholar 

  • Sadaka S, Sharara MA, Ashworth A, Keyser P, Allen F, Wright A (2014) Characterization of biochar from switchgrass carbonization. Energy 7:548–567

    CAS  Google Scholar 

  • Schlesinger HW (1997) Biogeochemistry: an analysis of global change. Academic Press, New York

    Google Scholar 

  • Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: context, chemical properties, environmental and health and safety issues. Energy Policy 42:49–58

    Article  CAS  Google Scholar 

  • Shima SL (1998) Mechanism of biological methane formation: structure and function of methyl-coenzyme M reductase. Prote Nucleic Acid Enzyme 43:1461–1467

    CAS  Google Scholar 

  • Siljanen HMP, Saari A, Krause S, Lensu A, Abell GCJ, Bodrossy L, Bodelier PLE, Martikainen PJ (2011) Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiol Ecol 75:430–445

    Article  CAS  Google Scholar 

  • Singh JS (2010) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100:1–10

    Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tignor HL, Miller (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Songa W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145

    Article  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  Google Scholar 

  • Tamai N, Takenaka C, Ishizuka S (2007) Water soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil. Soil Biol Biochem 39:1730–1736

    Article  CAS  Google Scholar 

  • Tiwari S, Singh JS, Singh DP (2015) Methanotrophs and CH4 sink: effect of human activity and ecological perturbations. Clim Change Environ Sustainabil 3:35–50

    Article  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Wu F, Jia Z, Wang S, Chang SX, Startsev A (2013) Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a chernozemic soil. Biol Fertil Soils 49:555–565

    Article  CAS  Google Scholar 

  • Wu M, Feng Q, Sun X, Wang H, Gielen G, Wu W (2015) Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Report 5, Article number: 10001

    Google Scholar 

  • Wuddivira MN, Stone RJ, Ekwue EI (2009) Structure stability of humid tropical soils as influenced by manure incorporation and incubation duration. Soil Sci Soc Am J 73:1353–1360

    Article  CAS  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Yang Y, Ma S, Zhao Y, Jing M, Xu Y, Chen J (2015) A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in Northern China. Sustain 7:13713–13725

    Article  Google Scholar 

  • Yao H, Conrad R (1999) Thermodynamics of methane production in different rice paddy soils from China, the Philippines, and Italy. Soil Biol Biochem 31:463–473

    Article  CAS  Google Scholar 

  • Yao H, Conrad R (2001) Thermodynamics of propionate degradation in anoxic paddy soil from different rice-growing regions. Soil Biol Biochem 33:359–364

    Article  CAS  Google Scholar 

  • Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268

    Article  CAS  Google Scholar 

  • Zhang XC, Liu XH (2012) Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. Int J Agric Biol 14:745–750

    Google Scholar 

  • Zhanga A, Biana R, Pana G, Cuia L, Hussaina Q, Li L, Jinwei Z, Zhenga J, Zhanga X, Xiaojun H, Yua X (2010a) Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160

    Article  Google Scholar 

  • Zhanga A, Cuia L, Pana G, Li L, Hussaina Q, Zhanga X, Zhenga J, Crowley D (2010b) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  Google Scholar 

  • Zwieten V, Singh LB, Joseph S, Kimber S, Cowie A, Yin Chan K (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London

    Google Scholar 

  • Zwieten VL, Kimber S, Morris S, Chan YK, Downie A, Rust J, Joseph S, Cowie A (2010) Effect of biochar from slow pyrolysisi of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Shankar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, C., Tiwari, S., Boudh, S., Singh, J.S. (2017). Biochar Application in Management of Paddy Crop Production and Methane Mitigation. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_7

Download citation

Publish with us

Policies and ethics