Skip to main content

Multifarious Benefits of Biochar Application in Different Soil Types

  • Chapter
  • First Online:
Biochar Applications in Agriculture and Environment Management

Abstract

The extensive use of chemical fertilizers in agriculture have long term deleterious impact such as leading salinity, decline fertility of soil with fast growth of agricultural production and it is predicted that the fertilizer use to continue increase in the coming years. With current scenario, there has been keen interest on biochar, produced from various crop residues with multiple environmental applications such as soil amelioration, pollutants removal and carbon sequestration. Biochar has several unique properties like high alkaline pH, fixed carbon content, stability against decay, water holding capacity and cation exchange capacity, which makes it an efficient, cost-effective and environmentally-friendly material. Many study showed the effectiveness of biochar amendments in soil i.e. nutrient status improvement, increases soil porosity, soil pH, soil moisture-holding capacity and boost the growth of beneficial plant growth promoting microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol V, Ben-Hur M, Verheijen FG, Keizer JJ, Martins MA, Tenaw H, Tchehansky L, Graber ER (2016) Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. J Soils Sediments 16:2709–2719

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, OK YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:61–68

    Article  Google Scholar 

  • Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410

    Article  CAS  Google Scholar 

  • Beesley L, Jiménez EM, Eyles JLG (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  • Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98

    Article  CAS  Google Scholar 

  • Brewer CE, Hu YY, Schmidt-Rohr K, Loynachan TE, Laird DA, Brown RC (2012) Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 41:1115–1122

    Article  CAS  Google Scholar 

  • Bruun S, Clauson-Kaas S, Bobulska L, Thomsen IK (2014) Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates. Eur J Soil Sci 65:52–59

    Article  CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  • Chaganti VN, Crohn DM, Å imůnek J (2015) Leaching and reclamation of a biochar and compost amended saline–sodic soil with mode rate SAR reclaimed water. Agric Water Manag 158:255–265

    Article  Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chen JH, Liu XY, Zheng JW, Zhang B, Lu HF, Chi ZZ, Pan GX, Li LQ, Zheng JF, Zhang XH, Wang JF, Yu XY (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Chen T, Liu R, Scott NR (2016) Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover biochar, syngas and bio-oil. Fuel Process Technol 142:124–134

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O ’ Neill RV, Paruelo J, Raskin RG, Suttonkk P, van den Belt M (1987) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Crombie K, MaÅ¡ek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131

    Article  CAS  Google Scholar 

  • Di Lonardo S, Baronti S, Vaccari FP, Albanese L, Battista P, Miglietta F, Bacci L (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For Urban Green 23:27–34

    Article  Google Scholar 

  • Durenkamp M, Luo Y, Brookes P (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42:2026–2029

    Article  CAS  Google Scholar 

  • Galvez A, Sinicco T, Cayuela ML, Mingorance MD, Fornasier F, Mondini C (2012) Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric Ecosyst Environ 160:3–14

    Article  CAS  Google Scholar 

  • Ge Y, Zhang JB, Zhang LM, Yang M, He JZ (2008) Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. J Soils Sediments 8:43–50

    Article  CAS  Google Scholar 

  • George C, Wagner M, Kucke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72

    Article  Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc B 362:187–196

    Article  CAS  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205

    Article  CAS  Google Scholar 

  • Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: review. Chemosphere 134:232–240

    Article  CAS  Google Scholar 

  • Iswaran V, Jauhri KS, Sen A (1980) Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191–192

    Article  Google Scholar 

  • Jeffery S, Verheijena FGA, van der Velde M, Bastos AC (2011) A quantitative re-view of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jindo K, Sanchez-Moneder MA, Hernandez T, Garcia C, Furukawa T, Matsumoto K, Sonoki T, Bastida F (2012) Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci Total Environ 416:476–481

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Joseph SD, Camps AM, Lin Y, Munroe P, Chia CH, Hook J, Zwieten LV, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48:501–515

    Article  CAS  Google Scholar 

  • Jung C, Oh J, Yoon Y (2015) Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer over flow components. Environ Sci Pollut Res 22(13):10058–10069

    Article  CAS  Google Scholar 

  • Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno JE, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. Int Achieve Future 5:12–23

    Google Scholar 

  • Kumar A, Singh JS (2017) Cyanoremediation: a green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol (2) managing environmental pollution. Springer, Cham, pp 59–83

    Chapter  Google Scholar 

  • Kumar A, Kaushal S, Saraf S, Singh JS (2017) Cyanobacterial biotechnology: an opportunity for sustainable industrial production. Clim Change Environ Sustain 5(1):97–110

    Article  Google Scholar 

  • Kumar A, Kaushal S, Saraf S, Singh JS (2018) Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosci (Landmark) 23:1789–1802

    Article  CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G (2015) Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agric 95:1321–1327

    Article  CAS  Google Scholar 

  • Lawrinenko M (2014) Anion exchange capacity of biochar. Graduate thesis. Iowa State University, Ames, Iowa, USA. http://lib.dr.iastate.edu/etd

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science, technology and implementation. Routledge Publishing, London/New York

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li L, Wang S, Li X, Li T, He X, Tao Y (2018) Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Sci Total Environ 640:1034–1043

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Li-li H, Zhe-ke Z, Hui-min Y (2017) Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J Integr Agric 16(3):704–712

    Article  Google Scholar 

  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:24–132

    Article  CAS  Google Scholar 

  • Luo S, Wang S, Tian L, Li S, Lia X, Shen Y, Tian C (2017) Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl Soil Ecol 117–118:10–15

    Article  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16(4):1366–1379

    Article  Google Scholar 

  • Marjenah MS (1994) Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jpn For Soc 76:462–464

    Google Scholar 

  • Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122

    Article  CAS  Google Scholar 

  • Qin SP, Hu CS, Dong WX (2010) Nitrification results in underestimation of soil urease activity as determined by ammonium production rate. Pedobiologia 53:401–404

    Article  CAS  Google Scholar 

  • Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724

    Article  CAS  Google Scholar 

  • Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15

    Article  CAS  Google Scholar 

  • Saifullah, Dahlawi S, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335

    Article  CAS  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422

    Article  CAS  Google Scholar 

  • Singh JS (2013) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1(1):20–24

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015) Biodiversity: current perspective. Clim Change Environ Sustain 3(1):71–72

    Article  Google Scholar 

  • Singh JS (2016) Microbes play major roles in ecosystem services. Clim Change Environ Sustain 3:163–167

    Article  Google Scholar 

  • Singh JS (ed) (2019) New and future developments in microbial biotechnology and bioengineering: microbes in soil, crop and environmental sustainability. Elsevier, San Diego

    Google Scholar 

  • Singh JS, Boudh S (2016) Climate change resilient crops to sustain Indian agriculture. Clim Change Environ Sustain 5:97–110

    Google Scholar 

  • Singh JS, Singh DP (eds) (2019) New and future developments in microbial biotechnology and bioengineering: microbial biotechnology in agro-environmental sustainability. Elsevier, San Diego

    Google Scholar 

  • Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol (2) managing environmental pollution. Springer, Cham, pp 123–145

    Chapter  Google Scholar 

  • Singh JS, Koushal S, Kumar A, Vimal SR, Gupta VK (2017b) Book review: microbial inoculants in sustainable agricultural productivity- Vol. II: functional application. Front Microbiol 7:2015

    Article  Google Scholar 

  • Singh JS, Kumar A, Singh M (2019a) Cyanobacteria: a sustainable and commercial bioresource in production of bio-fertilizer and bio-fuel from waste waters. Environ Sustain Indic 3-4:100008

    Article  Google Scholar 

  • Singh MK, Rai PK, Rai A, Singh S, Singh JS (2019b) Poly-β-hydroxybutyrate production by the cyanobacterium Scytonema geitleri Bharadwaja under varying environmental conditions. Biomol Ther 9(198):1–10

    Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Perez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84:37–48

    Article  CAS  Google Scholar 

  • Sun J, Chen L, Rene ER, Hu Q, Ma W, Shen Z (2018) Biological nitrogen removal using soil columns for the reuse of reclaimed water: performance and microbial community analysis. J Environ Manag 217:100–109

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang LH (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372

    Article  CAS  Google Scholar 

  • Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027

    Article  CAS  Google Scholar 

  • Teutscherova N, Lojka B, HouÅ¡ka J, Masaguer A, Benito M, Vazquez E (2018) Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. Eur J Soil Biol 88:15–26

    Article  CAS  Google Scholar 

  • Thies E, Rilling MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–106

    Google Scholar 

  • Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y (2016) Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ 556:89–97

    Article  CAS  Google Scholar 

  • Tiwari AP, Singh JS (2017) Plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 8(7233):73–79

    CAS  Google Scholar 

  • Uras U, Carrier M, Hardie AG, Knoetze JH (2012) Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrolysis 98:207–213

    Article  CAS  Google Scholar 

  • Vimal SR, Singh JS (2019) Salt tolerant pgpr and fym application in saline soil paddy agriculture sustainability. Clim Change Environ Sustain 7(1):23–33

    Google Scholar 

  • Vimal SR, Gupta J, Singh JS (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res 9(1):1–14

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Response to comment on fire-derived charcoal causes loss of forest humus. Science 321:1295d

    Article  CAS  Google Scholar 

  • Warnock DD, Lehman J, Kuype TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on Arbuscular Mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456

    Article  Google Scholar 

  • Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  Google Scholar 

  • Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197

    Article  CAS  Google Scholar 

  • Wright DA, Killham K, Glover LA, Prosser JI (1995) Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol 61:3537–3543

    Article  CAS  Google Scholar 

  • Xiao Q, Zhu LX, Zhang HP, Li XY, Shen YF, Li SQ (2016) Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci 67:495–507

    Article  Google Scholar 

  • Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731

    Article  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo I, Anshiori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G (2017) Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Appl Soil Ecol 113:11–21

    Article  Google Scholar 

  • Zama EF, Zhu YG, Reid BJ, Sun GX (2017) The role of biochar properties in influencing the sorption and desorption of Pb (II), Cd (II) and As (III) in aqueous solution. J Clean Prod 148:127–136

    Article  CAS  Google Scholar 

  • Zhang XK, Li Q, Liang WJ, Zhang M, Bao XL, Xie ZB (2013) Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere 23:98–103

    Article  CAS  Google Scholar 

  • Zhang H, Ding W, Yu H, He X (2015) Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biol Fertil Soils 51:137–150

    Article  CAS  Google Scholar 

  • Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of green waste biochar for two triazine pesticides. J Hazard Mater 181:121–126

    Article  CAS  Google Scholar 

  • Zheng JF, Chen JH, Pan GX, Liu XY, Zhang XH, Li LQ, Bian RJ, Cheng K, Zheng JW (2016) Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China. Sci Total Environ 571:206–217

    Article  CAS  Google Scholar 

  • Zheng H, Wang X, Chen L, Wang Z, Xia Y, Zhang Y, Wang H, Luo X, Xing B (2017) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ 41(3):517–532. https://doi.org/10.1111/pce.12944

    Article  CAS  Google Scholar 

  • Zheng Y, Han X, Li Y, Yang J, Li N, An N (2019) Effects of biochar and straw application on the physicochemical and biological properties of Paddy soils in northeast China. Sci Rep 9:16531. https://doi.org/10.1038/s41598-019-52978-w

    Article  CAS  Google Scholar 

  • Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pankaj, U. (2020). Multifarious Benefits of Biochar Application in Different Soil Types. In: Singh, J., Singh, C. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham. https://doi.org/10.1007/978-3-030-40997-5_12

Download citation

Publish with us

Policies and ethics