Skip to main content

Nanomaterials: Therapeutic Agent for Antimicrobial Therapy

  • Chapter
  • First Online:
Nanostructures for Antimicrobial and Antibiofilm Applications

Abstract

In recent time, nanomaterials have been developed as the most auspicious therapeutic remedy toward the infectious microbes, which cannot be healed through traditional treatments. The ancient age treatments via antibiotic drugs are now failed toward microbes, owing to their heavy and unnecessary high dose consumption by the common people. Now, the microbes have become resistant to these antibiotic medicines, and therefore, the nanomaterials came in light to tackle these rising problems related to microbe infections.

Among the various nanomaterials, the carbonaceous nanomaterials (including carbon nanotubes, fullerene, graphene oxide, reduced graphene oxide) and heavy metals (gold, silver) and their oxides (silver oxide, titanium dioxide, zinc oxide, copper oxide) are more commonly employed as antimicrobial agent. In this chapter, we have discussed the antimicrobial activity of these nanomaterials and their mode of action/mechanism. Their unique small size, high surface/volume ratio, large inner volume, and unique chemical and physical properties resulted in efficient antimicrobial activity or antibiofilm activity. Generally, antimicrobial activity/property of the nanomaterials is mainly dependent on the composition, surface modification, and intrinsic properties of the nanomaterials as well as type of microorganism. In this book chapter, the future aspect and challenges faced by nanomaterials toward efficient and effective bactericidal effect are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aal NA, Al-Hazmi F, Al-Ghamdi AA, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F (2015) Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 135:871–877

    Article  CAS  PubMed  Google Scholar 

  • Ajitha B, Reddy YA, Rajesh KM, Reddy PS (2016) Sesbania grandiflora leaf extract assisted green synthesis of silver nanoparticles: antimicrobial activity. Materials Today: Proceedings 3(6):1977–1984

    Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  PubMed  Google Scholar 

  • Alfuraydi AA, Devanesan S, Al-Ansari M, AlSalhi MS, Ranjitsingh AJ (2019) Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J Photochem Photobiol B 192:83–89

    Article  CAS  PubMed  Google Scholar 

  • Al-Heniti S, Umar A (2013) Structural, optical and field emission properties of urchin-shaped ZnO nanostructures. J Nanosci Nanotechnol 13(1):86–90

    Article  CAS  PubMed  Google Scholar 

  • Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B Biol 146:52–57

    Article  CAS  Google Scholar 

  • Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012

    Article  CAS  PubMed  Google Scholar 

  • Aruguete DM, Kim B, Hochella MF, Ma Y, Cheng Y, Hoegh A, Liu J, Pruden A (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci: Processes Impacts 15(1):93–102

    CAS  Google Scholar 

  • Azimi S, Behin J, Abiri R, Rajabi L, Derakhshan AA, Karimnezhad H (2014) Synthesis, characterization and antibacterial activity of chlorophyllin functionalized graphene oxide nanostructures. Sci Adv Mater 6(4):771–781

    Article  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. http://dx.doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612.https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Balouiri M, Sadiki M, Ibnsouda SK (2016 Apr 1) Methods for in vitro evaluating antimicrobial activity: a review. J Pharmaceut Anal 6(2):71–79

    Google Scholar 

  • Basker S, Karthik K, Karthik S (2016) In vitro evaluation of antibacterial efficacy using Passiflora foetida activated carbon. Res Pharm 22:6

    Google Scholar 

  • Bian X, Zhu J, Liao L, Scanlon MD, Ge P, Ji C, Girault HH, Liu B (2012) Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution. Electrochem Commun 22:128–132

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Google Scholar 

  • Bogdanovic U, Lazic V, Vodnik V, Budimir M, Markovic Z, Dimitrijevic S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78

    Article  CAS  Google Scholar 

  • Cambau E, Saunderson P, Matsuoka M, Cole ST, Kai M, Suffys P, Rosa PS, Williams D, Gupta UD, Lavania M, Cardona-Castro N (2018) Antimicrobial resistance in leprosy: results of the first prospective open survey conducted by a WHO surveillance network for the period 2009–15. Clin Microbiol Infect 24(12):1305–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer, Trieste

    Book  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653

    Article  CAS  Google Scholar 

  • Chiriac V, Stratulat DN, Calin G, Nichitus S, Burlui V, Stadoleanu C, Popa M, Popa IM (2016) Antimicrobial property of zinc based nanoparticles. In: IOP conference series: materials science and engineering, vol 133, no. 1. IOP Publishing, Bristol, p 012055

    Google Scholar 

  • Claussen JC, Shi J, Rout CS, Artiles MS, Roushar MM, Stensberg MC, Porterfield DM, Fisher TS (2012) Nano-sized biosensors for medical applications. In: Biosensors for medical applications. Woodhead Publishing, Cambridge, pp 65–102

    Chapter  Google Scholar 

  • Cui P, Li X, Zhu M, Wang B, Liu J, Chen H (2017) Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur J Med Chem 127:159–165

    Article  CAS  PubMed  Google Scholar 

  • Das Purkayastha M, Manhar AK, Mandal M, Mahanta CL (2014) Industrial waste-derived nanoparticles and microspheres can be potent antimicrobial and functional ingredients. J Appl Chem 2014:1

    Article  CAS  Google Scholar 

  • Deryabin DG, Davydova OK, Yankina ZZ, Vasilchenko AS, Miroshnikov SA, Kornev AB et al (2014) The activity of [60] fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: a comparative study. J Nanomater 2014:1–9

    Article  CAS  Google Scholar 

  • Deus RC, Cilense M, Foschini CR, Ramirez MA, Longo E, Simões AZ (2013) Influence of mineralizer agents on the growth of crystalline CeO2 nanospheres by the microwave-hydrothermal method. J Alloys Compd 550:245–251

    Article  CAS  Google Scholar 

  • Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    Article  CAS  Google Scholar 

  • Diez-Pascual AM (2018) Antibacterial activity of nanomaterials. Nanomaterials 8:359

    Article  PubMed Central  CAS  Google Scholar 

  • Dimapilis EA, Hsu CS, Mendoza RM, Lu MC (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28(2):47–56

    Article  CAS  Google Scholar 

  • Din MI, Arshad F, Hussain Z, Mukhtar M (2017) Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett 12(1):638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharmaceut Bull 5(1):19

    CAS  Google Scholar 

  • Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol 2012:1

    Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9(11):111289

    Article  CAS  Google Scholar 

  • Fernando SS, Gunasekara TD, Holton J (2018) Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J Infect Dis 8(1):2–11

    Article  Google Scholar 

  • Gonçalves SP, Strauss M, Delite FS, Clemente Z, Castro VL, Martinez DS (2016) Activated carbon from pyrolysed sugarcane bagasse: silver nanoparticle modification and ecotoxicity assessment. Sci Total Environ 565:833–840

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haghi M, Hekmatafshar M, Janipour MB, Gholizadeh SS, Faraz MK, Sayyadifar F, Ghaedi M (2012) Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. Int J Adv Biotechnol Res 3(3):621–624

    CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hassanien AS, Khatoon UT (2019) Synthesis and characterization of stable silver nanoparticles, Ag-NPs: discussion on the applications of Ag-NPs as antimicrobial agents. Phys B Condens Matter 554:21–30

    Article  CAS  Google Scholar 

  • Holubnycha V, Pogorielov M, Korniienko V, Kalinkevych O, Ivashchenko O, Peplinska B, Jarek M (2017) Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution. In: Nanomaterials: application and properties (NAP), 2017 IEEE 7th international conference 2017 Sep 10. IEEE, pp. 04NB10-1

    Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8(3):265–275

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  • Jain A, Bhargava R, Poddar P (2013) Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Mater Sci Eng C 33(3):1247–1253

    Google Scholar 

  • Janaki AC, Sailatha E, Gunasekaran S (2015 Jun 5) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 144:17–22

    Article  CAS  PubMed  Google Scholar 

  • Janeczko M, Demchuk OM, Strzelecka D, Kubinski K, Masłyk M (2016) New family of antimicrobial agents derived from 1, 4-naphthoquinone. Eur J Med Chem 124:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19(6):661–666

    Article  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Karaman DS, Manner S, Fallarero A, Rosenholm JM (2017) Current approaches for exploration of nanoparticles as antibacterial agents. In: Antibacterial agents. InTech, London

    Google Scholar 

  • Kroto H (1997) Symmetry, space, stars and C 60. Rev Mod Phys 69(3):703

    Article  CAS  Google Scholar 

  • Kumar KM, Mandal BK, Naidu EA, Sinha M, Kumar KS, Reddy PS (2013) Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 104:171–174

    Article  CAS  Google Scholar 

  • Kumar R, Umar A, Kumar G, Nalwa HS (2017) Antimicrobial properties of ZnO nanomaterials: a review. Ceram Int 43(5):3940–3961

    Article  CAS  Google Scholar 

  • Lakshmi SD, Avti PK, Hegde G (2018) Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: a review. Nano-Struct Nano-Object 16:306–321

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371

    Article  CAS  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wang J, Li J, Zeng M, Luo R, Shen J, Sun X, Han W, Wang L (2016) Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors. ACS Appl Mater Interfaces 8(11):7194–7204

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A et al (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine (Lond) 5(10):1525–1533

    Article  CAS  Google Scholar 

  • Mahmoodi S, Elmi A, Hallaj-nezhadi S (2018) Copper nanoparticles as antibacterial agents. J Mol Pharm Org Process Res 6(1):1–7

    Article  Google Scholar 

  • Marsh H, Reinoso RF (2006) Activated carbon, first edn. Elsevier, Amsterdam, pp 1–554

    Book  Google Scholar 

  • Nair S, Sasidharan A, Rani VD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20(1):235

    Article  CAS  Google Scholar 

  • Nor NM, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1(4):658–666

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  • Nzekwe IT, Agubata CO, Umeyor CE, Okoye IE, Ogwueleka CB (2016) Synthesis of silver nanoparticles by sodium borohydride reduction method: optimization of conditions for high anti-staphylococcal activity. Br J Pharmaceut Res 14(5):1–9

    Article  Google Scholar 

  • Padalia H, Moteriya P, Chanda S (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8(5):732–741

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9(3):035004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palanisamy S, Rajasekar P, Vijayaprasath G, Ravi G, Manikandan R, Prabhu NM (2017) A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mater Lett 189:196–200

    Article  CAS  Google Scholar 

  • Patil MP, Kim GD (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101(1):79–92

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Fu J, Zhang C, Tao J, Sun L, Chu PK (2014) Rice husk-derived activated carbon for Li ion battery anode. Nanosci Nanotechnol Lett 6(1):68–71

    Article  CAS  Google Scholar 

  • Prado JV, Vidal AR, Duran TC (2012) Application of copper bactericidal properties in medical practice. Rev Med Chil 140:1325–1332

    Article  PubMed  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://doi.org/www.springer.com/978-3-319-99570-0

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles 2013:431218. https://doi.org/10.1155/2013/431218

  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7(2):184–192

    Article  CAS  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60(1):75–80

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  PubMed  Google Scholar 

  • Raimondi MV, Listro R, Cusimano MG, La Franca M, Faddetta T, Gallo G, Schillaci D, Collina S, Leonchiks A, Barone G (2019) Pyrrolomycins as antimicrobial agents. Microwave-assisted organic synthesis and insights into their antimicrobial mechanism of action. Bioorg Med Chem 27:721–728

    Article  CAS  PubMed  Google Scholar 

  • Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870

    Article  CAS  PubMed  Google Scholar 

  • Rao NH, Lakshmidevi N, Pammi SV, Kollu P, Ganapaty S, Lakshmi P (2016) Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng C 62:553–557

    Article  CAS  Google Scholar 

  • Ravichandran V, Vasanthi S, Shalini S, Shah SA, Harish R (2016) Green synthesis of silver nanoparticles using Artocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 180:264–267

    Article  CAS  Google Scholar 

  • Rodrigo R, Libuy M, Feliu F, Hasson D (2013) Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. Biomed Res Int 2013:1

    Article  CAS  Google Scholar 

  • Santos CL, Albuquerque AJ, Sampaio FC, Keyson D (2013) Nanomaterials with antimicrobial properties: applications in health sciences. In: Microbial pathogens and strategies for combating them: science, technology and education, Microbiology book series, vol 4. Formatex Research Center, Badajoz, Spain, p 2

    Google Scholar 

  • Saraschandraa N, Pavithrab M, Sivakumar A (2013) Antimicrobial applications of TiO2 coated modified polyethylene (HDPE) films. Arch Appl Sci Res 5(1):189–194

    Google Scholar 

  • Saravanan A, Kumar PS, Devi GK, Arumugam T (2016) Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: evaluation of antimicrobial activities. Microb Pathog 97:198–203

    Article  CAS  PubMed  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekaran G, Karthikeyan S, Gupta VK, Boopathy R, Maharaja P (2013) Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater. Mater Sci Eng C 33(2):735–745

    Article  CAS  Google Scholar 

  • Sekhar MM, Nagarjuna U, Padmavathi V, Padmaja A, Reddy NV, Vijaya T (2018) Synthesis and antimicrobial activity of pyrimidinyl 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazoles. Eur J Med Chem 145:1–10

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96

    Article  CAS  Google Scholar 

  • Shi Z, Neoh KG, Kang ET (2007) Antibacterial and adsorption characteristics of activated carbon functionalized with quaternary ammonium moieties. Ind Eng Chem Res 46(2):439–445

    Article  CAS  Google Scholar 

  • Shinde VV, Dalavi DS, Mali SS, Hong CK, Kim JH, Patil PS (2014) Surfactant free microwave assisted synthesis of ZnO microspheres: study of their antibacterial activity. Appl Surf Sci 307:495–502

    Article  CAS  Google Scholar 

  • Stankovic A, Dimitrijevic S, Uskokovic D (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf B: Biointerfaces 102:21–28

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AA, Kadhum AA, Mohamad AB (2013) Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed 3(1):58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B Biol 120:66–73

    Article  CAS  Google Scholar 

  • Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H et al (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umar A, Chauhan MS, Chauhan S, Kumar R, Sharma P, Tomar KJ, Wahab R, Al-Hajry A, Singh D (2013) Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. J Biomed Nanotechnol 9(10):1794–1802

    Article  CAS  PubMed  Google Scholar 

  • Varghese S, Kuriakose S, Jose S (2013) Antimicrobial activity of carbon nanoparticles isolated from natural sources against pathogenic Gram-negative and Gram-positive bacteria. J Nanosci 6:2013

    Google Scholar 

  • Varghese R, Almalki MA, Ilavenil S, Rebecca J, Choi KC (2017) Silver nanoparticles synthesized using the seed extract of Trigonella foenum-graecum L. and their antimicrobial mechanism and anticancer properties. Saudi J Biol Sci 26:148–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9(1):109–115

    Article  CAS  Google Scholar 

  • Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Wickramaratne NP, Jaroniec M (2013 Feb 27) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5(5):1849–1855

    Article  CAS  PubMed  Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng. 9(1):9–14. https://doi.org/10.5101/nbe.v9i1

  • Yallappa S, Deepthi DR, Yashaswini S, Hamsanandini R, Chandraprasad M, Kumar SA, Hegde G (2017) Natural biowaste of groundnut shell derived nano carbons: synthesis, characterization and its in vitro antibacterial activity. Nano-Struct Nano-Object 12:84–90

    Article  CAS  Google Scholar 

  • Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20):16013–16019

    Article  CAS  PubMed  Google Scholar 

  • Yun H, Kim JD, Choi HC, Lee CW (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against Gram-negative and Gram-positive bacteria. Bull Kor Chem Soc 34(11):3261–3264

    Google Scholar 

  • Zhao Y, Wang ZQ, Zhao X, Li W, Liu SX (2013) Antibacterial action of silver-doped activated carbon prepared by vacuum impregnation. Appl Surf Sci 266:67–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Author Declaration, Mr. Majhi and Ms. Karfa have given the major contribution in writing this book chapter along with drawing the figures and tables, taking the copyright permission, etc.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majhi, K.C., Karfa, P., Madhuri, R. (2020). Nanomaterials: Therapeutic Agent for Antimicrobial Therapy. In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-40337-9_1

Download citation

Publish with us

Policies and ethics