Skip to main content

Toxicity Assessment of Nanomaterials

  • Chapter
  • First Online:
Magnetic Nanoheterostructures

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In the last decades, nanoscience had a spectacular evolution providing new, versatile engineered nanomaterials and nanotools with a plethora of applications in very diverse fields ranging from energy storage to medicine. Among the palette of nanomaterials, magnetic nanoparticles (in particular iron oxide-based) present unique physicochemical properties that are actively being exploited in the biomedical field. Currently, they are used for induced magnetic hyperthermia cancer treatments, as contrast agents for magnetic resonance imaging, as cell tracking elements, and for drug delivery modalities. In parallel to the growth of nanoscience and the ever-increasing applications of nanomaterials, concerns regarding the safety and toxicity of nanoparticles have arisen, both during and post-administration. In this chapter, we review key concepts related to nanotoxicology and to the fate of nanomaterials in the human body. A detailed description about the most accepted and practiced in vitro and in vivo methods used to evaluate the toxicity of nanomaterials is provided, with emphasis in magnetic nanomaterials for nanomedicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abakumov MA et al (2018) Toxicity of iron oxide nanoparticles: size and coating effects. J Biochem Mol Toxicol 32:e22225

    Article  CAS  Google Scholar 

  • Adiseshaiah PP, Hall JB, McNeil SE (2010) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:99–112

    Article  CAS  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  Google Scholar 

  • Ahamed M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  Google Scholar 

  • Ahamed M et al (2013) Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des 19:6681–6690

    Article  CAS  Google Scholar 

  • Al Faraj A, Shaik AP, Shaik AS (2014) Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology 5390:1–10

    Google Scholar 

  • Alarifi S, Ali D, Alkahtani S, Alhader MS (2014) Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res 159:416–424

    Article  CAS  Google Scholar 

  • Alberts B et al (2015) Molecular biology of the cell. Garland Sciense

    Google Scholar 

  • Ali S, Rytting E (2014) Influences of nanomaterials on the barrier function of epithelial cells. In: Advances in experimental medicine and biology, vol 811, pp 45–54

    Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science (80–.) 271:933–937

    Google Scholar 

  • Almeida JPM, Chen AL, Foster A, Drezek R (2011) Vivo biodistribution of nanoparticles. Nanomedicine 6:815–835

    Article  CAS  Google Scholar 

  • Amstad E, Textor M, Reimhult E (2011) Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3:2819

    Article  CAS  Google Scholar 

  • Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607

    Article  CAS  Google Scholar 

  • Aranda A et al (2013) Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol Vitr 27:954–963

    Article  CAS  Google Scholar 

  • Arbab AS et al (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846

    Article  Google Scholar 

  • Auffan M et al (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–4373

    Article  CAS  Google Scholar 

  • Auffan M et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  • Azqueta A, Arbillaga L, López de Cerain A (2015) Genotoxicity of nanoparticles. In: Sutariya Y, Pathak Y (eds) Biointeractions of nanomaterials. CRC Press, pp 353–363

    Google Scholar 

  • Banerjee R et al (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141

    Article  CAS  Google Scholar 

  • Barick KC et al (2009) Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. J Mater Chem 19:7023

    Article  CAS  Google Scholar 

  • Barltrop JA, Owen TC, Cory AH, Cory JG (1991) 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indicators. Bioorg Med Chem Lett 1:611–614

    Article  CAS  Google Scholar 

  • Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    Article  CAS  Google Scholar 

  • Barry SE (2008) Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperth 24:451–466

    Article  CAS  Google Scholar 

  • Beddoes CM, Case CP, Briscoe WH (2015) Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interface Sci 218:48–68

    Article  CAS  Google Scholar 

  • Bell G et al (2019) Functionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging. J Mater Chem B7:2212–2219

    Article  Google Scholar 

  • Benigni R, Bossa C (2011) Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev 111:2507–2536

    Article  CAS  Google Scholar 

  • Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47:236–242

    Article  CAS  Google Scholar 

  • Berridge MV, Tan AS, McCoy KD, Wang RUI (1996) The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 4:14–19

    Google Scholar 

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  CAS  Google Scholar 

  • Bhabra G et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4:876–883

    Article  CAS  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol. https://doi.org/10.1038/nbt.2989

    Article  Google Scholar 

  • Bhattacharya K et al (2012) Comparison of micro- and nanoscale Fe+3–containing (hematite) particles for their toxicological properties in human lung cells in vitro. Toxicol Sci 126:173–182

    Article  CAS  Google Scholar 

  • Biehl P et al (2018) Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers 10:91

    Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. https://doi.org/10.1038/nbt.3330

    Article  Google Scholar 

  • Bolognesi C, Fenech M (2013) Micronucleus assay in human cells: lymphocytes and buccal cells. In: Dhawan A, Bajpayee M (2013) Genotoxicity assessment: methods and protocols. Springer Science+Business Media, pp 191–208

    Google Scholar 

  • Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M (2017) Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans 46:12692–12704

    Google Scholar 

  • Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays—the neutral red (NR) and tetrazolium MTT tests. Toxicol Vitr 2:1–6

    Article  CAS  Google Scholar 

  • Borm P et al (2006) Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci. https://doi.org/10.1093/toxsci/kfj084

    Article  Google Scholar 

  • Bouhifd M et al (2012) Automation of an in vitro cytotoxicity assay used to estimate starting doses in acute oral systemic toxicity tests. Food Chem Toxicol 50:2084–2096

    Article  CAS  Google Scholar 

  • Bourrinet P et al (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324

    Article  CAS  Google Scholar 

  • Boverhof DR et al (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73:137–150

    Article  CAS  Google Scholar 

  • Boyer C et al (2010) Anti-fouling magnetic nanoparticles for siRNA delivery. J Mater Chem 20:255–265

    Article  CAS  Google Scholar 

  • Bresgen N, Eckl P, Bresgen N, Eckl PM (2015) Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 5:808–847

    Article  CAS  Google Scholar 

  • Briley-Saebo K et al (2004) Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res 316:315–323

    Article  CAS  Google Scholar 

  • Buliaková B et al (2017) Surface-modified magnetite nanoparticles act as aneugen-like spindle poison. Nanomed Nanotechnol Biol Med 13:69–80\

    Google Scholar 

  • Busquets M et al (2015a) Magnetic nanoparticles cross the blood-brain barrier: when physics rises to a challenge. Nanomaterials 5:2231–2248

    Article  CAS  Google Scholar 

  • Busquets M, Espargaró A, Sabaté R, Estelrich J (2015b) Magnetic nanoparticles cross the blood-brain barrier: when physics rises to a challenge. Nanomaterials. https://doi.org/10.3390/nano5042231

    Article  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Google Scholar 

  • Cai H et al (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5:1722–1731

    Article  CAS  Google Scholar 

  • Candeias LP et al (1998) The catalysed NADH reduction of resazurin to resorufin. J Chem Soc Perkin Trans 20:2333–2334

    Article  Google Scholar 

  • Caro C et al (2019) Comprehensive toxicity assessment of PEGylated magnetic nanoparticles for in vivo applications. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2019.01.051

    Article  Google Scholar 

  • Chen J et al (2009a) Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes. J Phys Chem B 113:11179–11185

    Article  CAS  Google Scholar 

  • Chen Y-S, Hung Y-C, Liau I, Huang GS (2009b) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864

    Article  CAS  Google Scholar 

  • Chen BA et al (2010) The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice. Int J Nanomed 5:593–599

    Article  CAS  Google Scholar 

  • Chertok B, Cole AJ, David AE, Yang VC (2010) Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol Pharm 7:375–385

    Article  CAS  Google Scholar 

  • Child HW et al (2011) Working together: the combined application of a magnetic field and penetratin for the delivery of magnetic nanoparticles to cells in 3D. ACS Nano. https://doi.org/10.1021/nn202163v

    Article  Google Scholar 

  • Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9:291–310

    CAS  Google Scholar 

  • Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  • Choi S-J, Oh J-M, Choy J-H (2009) Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103:463–471

    Article  CAS  Google Scholar 

  • Chonn A, Semple SC, Cullis PR (1992) Association of blood proteins with large unilamellar liposomes in vivo: relation to circulation lifetimes. J Biol Chem

    Google Scholar 

  • Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13:245–255

    Article  CAS  Google Scholar 

  • Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11:788–798

    Article  CAS  Google Scholar 

  • Chu M et al (2013) Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34:4078–4088

    Article  CAS  Google Scholar 

  • Contini C, Schneemilch M, Gaisford S, Quirke N (2018) Nanoparticle–membrane interactions. J Exp Nanosci 13:62–81

    Article  CAS  Google Scholar 

  • Corbo C et al (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11:81–100

    Article  CAS  Google Scholar 

  • Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212

    Article  CAS  Google Scholar 

  • Costa C et al (2015) In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. J Appl Toxicol 36:361–372

    Google Scholar 

  • Costa EC, Gaspar VM, Marques JG, Coutinho P, Correia IJ (2013) Evaluation of nanoparticle uptake in co-culture cancer models. PLoS One 8:1–13

    Google Scholar 

  • Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41

    Google Scholar 

  • Cowie H et al (2015) Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology 9:57–65

    Article  CAS  Google Scholar 

  • Crisponi G et al (2017) Toxicity of nanoparticles: etiology and mechanisms. Antimicrob Nanoarchitectonics 511–546. https://doi.org/10.1016/b978-0-323-52733-0.00018-5

  • Czekanska EM (2011) Assessment of cell proliferation with resazurin-based fluorescent dye. In: Stoddart MJ (ed) Mammalian cell viability: methods and protocols. Methods in molecular biology, vol 740. Humana Press, pp 27–32. https://doi.org/10.1007/978-1-61779-108-6_5

  • Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  Google Scholar 

  • de Lima R et al (2013) Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes: a promising vehicle as a nitric oxide releasing nanocarrier in biomedical applications. J Phys Conf Ser 429:012021

    Article  CAS  Google Scholar 

  • De Matteis V (2017) Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5

    Google Scholar 

  • De Simone U et al (2018) Human 3D cultures as models for evaluating magnetic nanoparticle CNS cytotoxicity after short- and repeated long-term exposure. Int J Mol Sci 19

    Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. https://doi.org/10.1016/S1046-2023(03)00032-X

    Article  Google Scholar 

  • Decker T, Lohmann-Matthes M-L (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  CAS  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44

    Article  CAS  Google Scholar 

  • Dhawan A, Bajpayee M (eds) (2013) Genotoxicity assessment: methods and protocols. Methods in molecular biology, vol 1044. Humana Press

    Google Scholar 

  • Doak SH et al (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293

    Article  CAS  Google Scholar 

  • Doak SH, Liu Y, Chen C (2017) Genotoxicity and cancer. In: Fadeel B, Pietroiusti A, Shvedova AA (eds) Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health, 2nd edn. Academic Press, pp 423–445. https://doi.org/10.1016/b978-0-12-809199-9.00018-5

  • Dobson J (2006) Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine 1:31–37

    Article  CAS  Google Scholar 

  • Donaldson K, Poland CA (2013) Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol 24:724–734

    Article  CAS  Google Scholar 

  • Douville NJ et al (2010) Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers. Anal Chem. https://doi.org/10.1021/ac9029345

    Article  Google Scholar 

  • Eastmond DA, Pinkel D (1990) Detection of aneuploidy and aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome-specific DNA probes. Mutat Res Mutagen Relat Subj 234:303–318

    CAS  Google Scholar 

  • Elder A et al (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  CAS  Google Scholar 

  • Evans SJ et al (2019) In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol 16:1–14

    Article  Google Scholar 

  • Fadeel B (2015) Handbook of safety assessment of nanomaterials: from toxicological testing to personalized medicine. Pan Standford series on biomedical nanotechnology. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  • Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res Genet Toxicol 339:37–59

    Article  CAS  Google Scholar 

  • Fang K et al (2016) Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol 49:509–518

    Article  CAS  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res Mol Mech Mutagen 455:81–95

    Article  CAS  Google Scholar 

  • Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res Mutagen Relat Subj 147:29–36

    CAS  Google Scholar 

  • Feng Q et al (2018a) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082

    Article  CAS  Google Scholar 

  • Feng Q et al (2018b) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Fernández-Bertólez N et al (2018a) Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 406–407:81–91

    Article  CAS  Google Scholar 

  • Fernández-Bertólez N et al (2018b) Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutat Res Toxicol Environ Mutagen. https://doi.org/10.1016/J.MRGENTOX.2018.11.013

    Article  Google Scholar 

  • Fernández-Bertólez N et al (2018c) Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 118:13–23

    Article  CAS  Google Scholar 

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571

    Article  CAS  Google Scholar 

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  • Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissueand cell sections. Cold Spring Harb Protoc 3:4986–4988

    Google Scholar 

  • Foroozandeh P, Aziz AA (2018) Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 13:339

    Article  CAS  Google Scholar 

  • Friedrich J et al (2007) A reliable tool to determine cell viability in complex 3-D culture: the acid phosphatase assay. J Biomol Screen. https://doi.org/10.1177/1087057107306839

    Article  Google Scholar 

  • Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc. https://doi.org/10.1038/nprot.2008.226

    Article  Google Scholar 

  • Fu X, Wang X, Zhou S, Zhang Y (2017) IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy. Int J Nanomed 12:3751–3766

    Article  CAS  Google Scholar 

  • Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363

    Article  CAS  Google Scholar 

  • Gaharwar US, Meena R, Rajamani P (2017) Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol 37:1232–1244

    Article  CAS  Google Scholar 

  • Gamboa JM, Leong KW (2013) In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2013.01.003

    Article  Google Scholar 

  • Gangopadhyay S et al (1992) Magnetic properties of ultrafine iron particles. Phys Rev B 45:9778–9787

    Article  CAS  Google Scholar 

  • Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Chic Ill) 56:307–311

    Google Scholar 

  • Gilbert DF, Friedrich O (2017) Cell viability assays: methods and protocols. Methods in molecular biology, vol 1601. Humana Press

    Google Scholar 

  • Gojova A et al (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409

    Article  CAS  Google Scholar 

  • Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol Vitr 15:257–259

    Article  CAS  Google Scholar 

  • Gonzalez L, Sanderson BJS, Kirsch-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26:185–191

    Article  CAS  Google Scholar 

  • Gonzalez-Moragas L et al (2017) Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 11:647–657

    Google Scholar 

  • Goodman TT, Olive PL, Pun SH (2007) Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomed

    Google Scholar 

  • Goodman TT, Chee PN, Suzie HP (2008) 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjugate Chem. https://doi.org/10.1021/bc800233a

    Article  Google Scholar 

  • Gordon S, Martinez-Pomares L (2017) Physiological roles of macrophages. Pflugers Arch 469:365–374

    Article  CAS  Google Scholar 

  • Granot D, Shapiro EM (2011) Release activation of iron oxide nanoparticles: (REACTION) a novel environmentally sensitive MRI paradigm. Magn Reson Med 65:1253–1259

    Article  CAS  Google Scholar 

  • Gratton SEA et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618

    Article  CAS  Google Scholar 

  • Graziano MJ, Jacobson-Kram D (2015) Genotoxicity and carcinogenicity testing of pharmaceuticals. Springer International Publishing

    Google Scholar 

  • Gref R et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  Google Scholar 

  • Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Methods molecular biology, vol 624, pp 25–37

    Google Scholar 

  • Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3:711–717

    Article  CAS  Google Scholar 

  • Guarnieri D et al (2014) Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale 6:10264–10273

    Article  CAS  Google Scholar 

  • Guo S, Huang L (2011) Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater 2011:1–12

    Google Scholar 

  • Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014

    CAS  Google Scholar 

  • Guo Y, Wang W, Peng L, Zhang P (2015) Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 9:1065–1072

    Article  Google Scholar 

  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510

    Article  CAS  Google Scholar 

  • Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S, Juillerat-Jeanneret L (2012) Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441:813–821

    Google Scholar 

  • Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol Vitr 18:703–710

    Article  CAS  Google Scholar 

  • Han D-W et al (2011) Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomed 6:3219

    Article  CAS  Google Scholar 

  • Hanot CC, Choi YS, Anani TB, Soundarrajan D, David AE (2015) Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci 17

    Google Scholar 

  • Harris G et al (2015) Iron oxide nanoparticle toxicity testing using high-throughput analysis and high-content imaging. Nanotoxicology 9:87–94

    Article  CAS  Google Scholar 

  • Haselsberger K, Peterson DC, Thomas DG, Darling JL (1996) Assay of anticancer drugs in tissue culture: comparison of a tetrazolium-based assay and a protein binding dye assay in short-term cultures derived from human malignant glioma. Anticancer Drugs 7:331–338

    Article  CAS  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. https://doi.org/10.1038/nrc1456

    Article  Google Scholar 

  • Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol. https://doi.org/10.1038/nbt0897-778

    Article  Google Scholar 

  • Hirayama D, Iida T, Nakase H (2017) The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci 19

    Google Scholar 

  • Hirsch V et al (2013) Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale 5:3723

    Article  CAS  Google Scholar 

  • Hong S et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782

    Article  CAS  Google Scholar 

  • Hong S et al (2006) Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 17:728–734

    Article  CAS  Google Scholar 

  • Horváth S (1980) Cytotoxicity of drugs and diverse chemical agents to cell cultures. Toxicology 16:59–66

    Article  Google Scholar 

  • Hsiao J-K et al (2008) Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed 21:820–829

    Article  CAS  Google Scholar 

  • Huang Y-W, Wu C, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3:4842–4859

    Google Scholar 

  • Huang X et al (2011a) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–5399

    Article  CAS  Google Scholar 

  • Huang H-C, Barua S, Sharma G, Dey SK, Rege K (2011b) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357

    Article  CAS  Google Scholar 

  • Huang Y, Mao K, Zhang B, Zhao Y (2017) Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C 70:763–771

    Article  CAS  Google Scholar 

  • Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18:49–53

    Article  CAS  Google Scholar 

  • Hume DA, Irvine KM, Pridans C (2019) The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol 40:98–112

    Article  CAS  Google Scholar 

  • Huth S et al (2004) Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 6:923–936

    Article  CAS  Google Scholar 

  • Inglese J (2010) A practical guide to assay development and high-throughput screening in drug discovery. CRC Press

    Google Scholar 

  • Ishiyama M, Shiga M, Sasamoto K, Mizoguchi M, He PG (1993) A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 41:1118–1122

    Article  CAS  Google Scholar 

  • ISO/TS 80004-1 (2015(en)) Nanotechnologies—vocabulary—Part 1: Core terms. Available at: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en. Accessed: 29 Mar 2019

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327

    Article  CAS  Google Scholar 

  • Jain MR, Bandyopadhyay D, Sundar R (2018) Scientific and regulatory considerations in the development of in vitro techniques for toxicology. In Vitro Toxicol 165–185. https://doi.org/10.1016/b978-0-12-804667-8.00009-2

  • Jia G et al (2018) NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 178

    Google Scholar 

  • Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  CAS  Google Scholar 

  • Joris F et al (2016) The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J Nanobiotechnol 14:69

    Article  CAS  Google Scholar 

  • Jun Y, Seo J, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189

    Article  CAS  Google Scholar 

  • Kain J, Karlsson HL, Moller L (2012) DNA damage induced by micro- and nanoparticles–interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 27:491–500

    Article  CAS  Google Scholar 

  • Kang H et al (2018) Theranostic nanosystems for targeted cancer therapy. Nano Today 23:59–72

    Article  CAS  Google Scholar 

  • Kansara K et al (2015) TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen 56:204–217

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  • Karlsson HL et al (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles—importance of the metal release process. Toxicology 313:59–69

    Article  CAS  Google Scholar 

  • Kenny PA et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. https://doi.org/10.1016/j.molonc.2007.02.004

    Article  Google Scholar 

  • Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 100:728–737

    Article  CAS  Google Scholar 

  • Khanna P, Ong C, Bay B, Baeg G (2015) Nanotoxicity: an interplay of oxidative stress. Inflamm Cell Death Nanomater 5:1163–1180

    CAS  Google Scholar 

  • Kharazian B et al (2018) Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Sci Rep 8:12557

    Article  CAS  Google Scholar 

  • Kievit FM et al (2009) PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251

    Article  CAS  Google Scholar 

  • Kievit FM et al (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152:76–83

    Article  CAS  Google Scholar 

  • Kiliç G et al (2015) In vitro toxicity evaluation of silica-coated iron oxide nanoparticles in human SHSY5Y neuronal cells. Toxicol Res 5:235–247

    Google Scholar 

  • Kim JS et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347

    Article  CAS  Google Scholar 

  • Kim T-H et al (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res Part A100A:1033–1043

    Article  CAS  Google Scholar 

  • Kim Y et al (2014) Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1322725111

    Article  Google Scholar 

  • Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    CAS  Google Scholar 

  • Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C (2012) Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 425:393–397

    Article  CAS  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    Article  CAS  Google Scholar 

  • Könczöl M et al (2011) Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-jB. Chem Res Toxicol 24:1460–1475

    Article  CAS  Google Scholar 

  • Kreyling WG et al (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21:55–60

    Article  CAS  Google Scholar 

  • Kristensen BW, Noer H, Gramsbergen JB, Zimmer J, Noraberg J (2003) Colchicine induces apoptosis in organotypic hippocampal slice cultures. Brain Res. https://doi.org/10.1016/S0006-8993(02)04080-5

    Article  Google Scholar 

  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86:1123–1136

    Article  CAS  Google Scholar 

  • Kuhn SJ, Hallahan DE, Giorgio TD (2006) Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system. Ann Biomed Eng. https://doi.org/10.1007/s10439-005-9004-5

    Article  Google Scholar 

  • Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 87:1883–1900

    Article  CAS  Google Scholar 

  • Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7:243–256

    Article  CAS  Google Scholar 

  • Kumar A, Aileen Senapati V, Dhawan A (2018) Protocols for in vitro and in vivo toxicity assessment of engineered nanoparticles. In: Dhawan A, Anderson D, Shanker R (eds) Nanotoxicology: experimental and computational perspectives (issues in toxicology No. 35). Royal Society of Chemistry, pp 94–132. https://doi.org/10.1039/9781782623922-00094

  • Kunzmann A et al (2011) Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253:81–93

    Article  CAS  Google Scholar 

  • Kupcsik L (2011) Estimation of cell number based on metabolic activity: the MTT reduction assay. In: Stoddart M (ed) Mammalian cell viability: methods and protocols. Methods in molecular biology, vol 740. Humana Press, pp 13–19. https://doi.org/10.1007/978-1-61779-108-6_3

  • Kurtz-Chalot A et al (2014) Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity. J Nanoparticle Res 16:2738

    Article  CAS  Google Scholar 

  • Kwon Y-S, Choi K-B, Lim H, Lee S, Lee J-J (2018) Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications. Jpn J Appl Phys 57:06HE03

    Google Scholar 

  • Langley G et al (2015) Lessons from toxicology: developing a 21st-century paradigm for medical research. Environ Health Perspect 123:A268–A272

    Article  CAS  Google Scholar 

  • Lartigue L et al (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949

    Article  CAS  Google Scholar 

  • Lee MJE et al (2010) Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS One 5:e9536

    Google Scholar 

  • Lee C-M et al (2009a) SPION-loaded chitosan–linoleic acid nanoparticles to target hepatocytes. Int J Pharm 371:163–169

    Article  CAS  Google Scholar 

  • Lee J, Lilly D, Doty C, Podsiadlo P, Kotov N (2009b) In vitro toxicity testing of nanoparticles in 3D cell culture. Small. https://doi.org/10.1002/smll.200801788

    Article  Google Scholar 

  • Leroueil PR et al (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 40:335–342

    Article  CAS  Google Scholar 

  • Levy M et al (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32:3988–3999

    Article  CAS  Google Scholar 

  • Li L et al (2015) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 1–8 (2015). https://doi.org/10.3109/10717544.2015.1006404

  • Li S-D, Huang L (2009) Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta 1788:2259–2266

    Article  CAS  Google Scholar 

  • Li J et al (2013) Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater Interfaces 5:10357–10366

    Article  CAS  Google Scholar 

  • Lindberg HK et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173

    Article  CAS  Google Scholar 

  • Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466

    Article  CAS  Google Scholar 

  • Liu H-L et al (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci 107:15205–15210

    Article  CAS  Google Scholar 

  • Liu G et al (2011) N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small 7:2742–2749

    Article  CAS  Google Scholar 

  • Liu MC et al (2013) Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip. https://doi.org/10.1039/c3lc41414k

    Article  Google Scholar 

  • Liu Z et al (2016) Magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors. Nanoscale 8:7544–7555

    Article  CAS  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–17

    Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chemie Int Ed 46:1222–1244

    Google Scholar 

  • Lundin A, Hasenson M, Persson J, Pousette A (1986) Estimation of biomass in growing cell lines by ATP assay. Methods Enzymol 133:27–42

    Article  CAS  Google Scholar 

  • Lundqvist M et al (2017) The nanoparticle protein corona formed in human blood or human blood fractions. PLoS One 12:e0175871

    Google Scholar 

  • Lundqvist M et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0805135105

    Article  Google Scholar 

  • Luo C et al (2015) Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Arch Toxicol 89:357–369

    Article  CAS  Google Scholar 

  • Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 354:217–226

    Article  CAS  Google Scholar 

  • Magdolenova Z et al (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278

    Google Scholar 

  • Magdolenova Z et al (2015) Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology 9:44–56

    Article  CAS  Google Scholar 

  • Mahmoudi M et al (2011) Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3:1127–1138

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  CAS  Google Scholar 

  • Malvindi MA et al (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 9:1–11

    Article  CAS  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:1–15

    Article  CAS  Google Scholar 

  • Manshian BB et al (2018) Nanoparticle-induced inflammation can increase tumor malignancy. Acta Biomater 68:99–112

    Article  CAS  Google Scholar 

  • Marshall RR, Murphy M, Kirkland DJ, Bentley KS (1996) Fluorescence in situ hybridisation with chromosome-specific centromeric probes: a sensitive method to detect aneuploidy. Mutat Res Mol Mech Mutagen 372:233–245

    Article  CAS  Google Scholar 

  • McCaffrey TA, Agarwal LA, Weksler BB (1988) A rapid fluorometric DNA assay for the measurement of cell density and proliferation in vitro. Vitr Cell Dev Biol 24:247–252

    Article  CAS  Google Scholar 

  • McKelvey-Martin VJ et al (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res Mol Mech Mutagen 288:47–63

    Article  CAS  Google Scholar 

  • Mejías R et al (2013) Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J Control Release 171:225–233

    Article  CAS  Google Scholar 

  • Miao X, Leng X, Zhang Q (2017) The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci 18

    Google Scholar 

  • Miernicki M, Hofmann T, Eisenberger I, von der Kammer F, Praetorius A (2019) Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat Nanotechnol 14:208–216

    Article  CAS  Google Scholar 

  • Mishra SK, Khushu S, Gangenahalli G (2018) Effects of iron oxide contrast agent in combination with various transfection agents during mesenchymal stem cells labelling: An in vitro toxicological evaluation. Toxicol Vitr 50:179–189

    Article  CAS  Google Scholar 

  • Mitjans M, Nogueira-Librelotto DR, Vinardell MP, Nogueira-Librelotto DR, Vinardell MP (2018) Nanotoxicity In vitro: limitations of the main cytotoxicity assays. In: Kumar V, Dasgupta N, Ranjan S (eds) Nanotoxicology: toxicity evaluation, risk assessment and management. CRC Press, pp 171–192. https://doi.org/10.1201/b21545-8

  • Moghimi SM, Hunter AC, Andresen TL (2011) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503

    Article  CAS  Google Scholar 

  • Mok H et al (2010) pH-sensitive sirna nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm 7:1930–1939

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Mueller-Klieser W (1987) Multicellular spheroids—a review on cellular aggregates in cancer research. J Cancer Res Clin Oncol. https://doi.org/10.1007/BF00391431

    Article  Google Scholar 

  • Mueller-Klieser W (2017) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol Physiol. https://doi.org/10.1152/ajpcell.1997.273.4.c1109

    Article  Google Scholar 

  • Mulder WJ et al (2007) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine 2:307–324

    Article  CAS  Google Scholar 

  • Müller K et al (2007) Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28:1629–1642

    Article  CAS  Google Scholar 

  • Müller E et al (2018) Magnetic nanoparticles interact and pass an in vitro co-culture blood-placenta barrier model. Nanomaterials 8:108

    Article  CAS  Google Scholar 

  • Nabiev I et al (2007) Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. https://doi.org/10.1021/NL0719832

    Article  Google Scholar 

  • Nachlas MM, Margulies SI, Goldberg JD, Seligman AM (1960) The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem 1:317–326

    Article  CAS  Google Scholar 

  • Nakamura H, Watano S (2018) Direct permeation of nanoparticles across cell membrane: a review. KONA Powder Part J 35:49–65

    Google Scholar 

  • Nakayama GR, Caton MC, Nova MP, Parandoosh Z (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204:205–208

    Article  CAS  Google Scholar 

  • Narayanan S et al (2012) Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4:251–260

    Article  CAS  Google Scholar 

  • Nederman T, Twentyman P (1984) Spheroids for studies of drug effects. In: Acker H, Carlsson J, Durand R, Sutherland RM (eds) Spheroids in cancer research: methods and perspectives, pp 84–102. Springer, Berlin. https://doi.org/10.1007/978-3-642-82340-4_5

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science (80–.) 311:622–627

    Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006b) Toxic potential of materials at the nanolevel. Science. https://doi.org/10.1126/science.1114397

    Article  Google Scholar 

  • Neri M et al (2007) Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells. https://doi.org/10.1634/stemcells.2007-0251

    Article  Google Scholar 

  • Neuwelt EA et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465–474

    Article  CAS  Google Scholar 

  • Nguyen VH, Lee B-J (2017) Protein corona: a new approach for nanomedicine design. Int J Nanomed 12:3137–3151

    Article  CAS  Google Scholar 

  • Nguyen TA, Yin TI, Reyes D, Urban GA (2013) Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem. https://doi.org/10.1021/ac402761s

    Article  Google Scholar 

  • Niles AL, Moravec RA, Riss TL (2008) Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 3:655–670

    Article  CAS  Google Scholar 

  • Nima ZA et al (2019) Bioinspired magnetic nanoparticles as multimodal photoacoustic, photothermal and photomechanical contrast agents. Sci Rep 9:887

    Article  CAS  Google Scholar 

  • O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 5426:5421–5426

    Google Scholar 

  • O’Brien LE et al (2001) Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol. https://doi.org/10.1038/ncb0901-831

    Article  Google Scholar 

  • Oberdörster G et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9(Suppl 1):51

    Google Scholar 

  • Oliveira H et al (2013) Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release 169:165–170

    Article  CAS  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  CAS  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  Google Scholar 

  • Palmer LS et al (1930) Milchuntersuchung. Fresenius’ Zeitschrift für Anal Chemie 82:268–271

    Article  Google Scholar 

  • Pan DC et al (2018) Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Sci Rep 8:1615

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Park E-J et al (2014) Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol Vitr 28:1402–1412

    Google Scholar 

  • Paul W, Sharma CP (2010) Inorganic nanoparticles for targeted drug delivery. Biointegr Med Implant Mater 204–235. https://doi.org/10.1533/9781845699802.2.204

  • Paull KD et al (1988) The synthesis of XTT: a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J Heterocycl Chem 25:911–914

    Article  CAS  Google Scholar 

  • Perez RP, Godwin AK, Handel LM, Hamilton TC (1993) A comparison of clonogenic, microtetrazolium and sulforhodamine B assays for determination of cisplatin cytotoxicity in human ovarian carcinoma cell lines. Eur J Cancer 29:395–399

    Article  Google Scholar 

  • Pham BTT et al (2018) Biodistribution and clearance of stable superparamagnetic maghemite iron oxide nanoparticles in mice following intraperitoneal administration. Int J Mol Sci 19

    Google Scholar 

  • Pietroiusti A (2012) Health implications of engineered nanomaterials. Nanoscale 4:1231

    Article  CAS  Google Scholar 

  • Pietroiusti A, Campagnolo L, Fadeel B (2013) Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9:1557–1572

    Article  CAS  Google Scholar 

  • Pincu M, Bass D, Norman A (1984) An improved micronuclear assay in lymphocytes. Mutat Res Lett 139:61–65

    Article  CAS  Google Scholar 

  • Pöttler M et al (2015) Genotoxicity of superparamagnetic iron oxide nanoparticles in granulosa cells. Int J Mol Sci 16:26280–26290

    Article  CAS  Google Scholar 

  • Prabhakarpandian B et al (2008) Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomed Microdev. https://doi.org/10.1007/s10544-008-9170-y

    Article  Google Scholar 

  • Prabhu S, Mutalik S, Rai S, Udupa N, Rao BSS (2015) PEGylation of superparamagnetic iron oxide nanoparticle for drug delivery applications with decreased toxicity: an in vivo study. J Nanoparticle Res 17

    Google Scholar 

  • Präbst K, Engelhardt H, Ringgeler S, Hübner H (2017) Basic colorimetric proliferation assays: MTT, WST, and resazurin. In: Gilbert D, Friedrich O (eds) Cell viability assays: methods and protocols. Methods in molecular biology, vol 1601. Humana Press, New York, pp 1–17. https://doi.org/10.1007/978-1-4939-6960-9_1

  • Prosen L et al (2013) Magnetofection: a reproducible method for gene delivery to melanoma cells. Biomed Res Int 2013:209452

    Article  Google Scholar 

  • Qiao R et al (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano. https://doi.org/10.1021/nn300240p

    Article  Google Scholar 

  • Reddy ST et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164

    Article  CAS  Google Scholar 

  • Reichel D, Tripathi M, Perez JM (2019) Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment. Nanotheranostics 3:66–88

    Article  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/ cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  Google Scholar 

  • Riss TL, Moravec RA (2006) Cell proliferation assays: improved homogeneous methods used to measure the number of cells in culture. In: Celis JE (ed) Cell biology: a laboratory handbook, vol 1. Elsevier Academic Press, pp 25–33

    Google Scholar 

  • Riss TL, Moravec RA, O’Brien MA, Hawkins EM, Niles A (2006) Homogeneous multiwell assays for measuring cell viability, cytotoxicity and apoptosis. In: Minor L (ed) Handbook of assay development in drug discovery. Taylor & Francis Group, pp 385–406

    Google Scholar 

  • Riss TL, Moravec RA, Niles AL (2010) Assay development for cell viability and apoptosis for high-throughput screening. In: Chen T (ed) A practical guide to assay development and high-throughput screening in drug discovery. Critical reviews in combinatorial chemistry. CRC Press, pp 99–122

    Google Scholar 

  • Riss TL, Moravec RA, Niles AL (2011) Cytotoxicity testing: measuring viable cells, dead cells, and detecting mechanism of cell death. In: Stoddart M (ed) Mammalian cell viability: methods and protocols. Humana Press, pp 103–114. https://doi.org/10.1007/978-1-61779-108-6_12

  • Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5227–5231

    Google Scholar 

  • Rizzo LY et al (2013) In vivo nanotoxicity testing using the zebrafish embryo assay. J Mater Chem B1:3918

    Article  CAS  Google Scholar 

  • Rodrigues RM et al (2013) Assessment of an automated in vitro basal cytotoxicity test system based on metabolically-competent cells. Toxicol Vitr 27:760–767

    Article  CAS  Google Scholar 

  • Rosano JM et al (2009) A physiologically realistic in vitro model of microvascular networks. Biomed Microdev. https://doi.org/10.1007/s10544-009-9322-8

    Article  Google Scholar 

  • Rubinstein LV et al (1990) Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 82:1113–1118

    Article  CAS  Google Scholar 

  • Ruponen M, Ylä-Herttuala S, Urtti A (1999) Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta Biomembr. https://doi.org/10.1016/S0005-2736(98)00199-0

    Article  Google Scholar 

  • Sadeghi L, Tanwir F, Yousefi Babadi V (2015) In vitro toxicity of iron oxide nanoparticle: oxidative damages on Hep G2 cells. Exp Toxicol Pathol 67:197–203

    Google Scholar 

  • Sadiq R, Khan QM, Mobeen A, Hashmat AJ (2015) In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug Chem Toxicol 38:152–161

    Article  CAS  Google Scholar 

  • Sahu SC, Casciano DA (2009) Nanotoxicity: from in vivo and in vitro models to health risks. https://doi.org/10.1002/9780470747803

  • Sahu SC, Hayes AW (2017) Toxicity of nanomaterials found in human environment. Toxicol Res Appl 1:239784731772635

    Google Scholar 

  • Salatin S, Dizaj SM, Khosroushahi AY (2015) Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 39:881–890

    Article  CAS  Google Scholar 

  • Same S, Aghanejad A, Nakhjavani SA, Barar J, Omidi Y (2016) Radiolabeled theranostics: magnetic and gold nanoparticles. Bioimpacts 6:169–181

    Article  CAS  Google Scholar 

  • Sargent LM et al (2009) Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen 50:708–717

    Article  CAS  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicology of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  CAS  Google Scholar 

  • Schleich N et al (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447:94–101

    Article  CAS  Google Scholar 

  • Schuurs AHWM, Van Weemen BK (1980) Enzyme-immunoassay: a powerful analytical tool. J Immunoassay 1:229–249

    Google Scholar 

  • Scudiero DA et al (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    CAS  Google Scholar 

  • Seabra AB et al (2014) Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: Implications for cancer treatment. Chem Res Toxicol 27:1207–1218

    Article  CAS  Google Scholar 

  • Seo DY, Jin M, Ryu JC, Kim YJ (2017) Investigation of the genetic toxicity by dextran-coated superparamagnetic iron oxide nanoparticles (SPION) in HepG2 cells using the comet assay and cytokinesis-block micronucleus assay. Toxicol Environ Health Sci 9:23–29

    Article  Google Scholar 

  • Shah V et al (2013) Genotoxicity of different nanocarriers: possible modifications for the delivery of nucleic acids. Curr Drug Discov Technol 10:8–15

    CAS  Google Scholar 

  • Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm3873

    Article  Google Scholar 

  • Shanavas A, Sasidharan S, Bahadur D, Srivastava R (2017) Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging. J Colloid Interface Sci 486:112–120

    Article  CAS  Google Scholar 

  • Sharifi S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:93

    Article  Google Scholar 

  • Sharkey J et al (2017) Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance–based detection in vivo. Cytotherapy 19:555–569

    Article  CAS  Google Scholar 

  • Sharma A et al (2018) Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  • Shaw J, Raja SO, Dasgupta AK (2014) Modulation of cytotoxic and genotoxic effects of nanoparticles in cancer cells by external magnetic field. Cancer Nanotechnol 5:2

    Article  CAS  Google Scholar 

  • Shi J et al (2012) Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona. Acta Biomater. https://doi.org/10.1016/j.actbio.2012.04.024

    Article  Google Scholar 

  • Shi J et al (2013) PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials 34:9666–9677

    Article  CAS  Google Scholar 

  • Shi D, Mi G, Bhattacharya S, Nayar S, Webster TJ (2016) Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood–brain barrier model. Int J Nanomed. https://doi.org/10.2147/IJN.S108333

    Article  Google Scholar 

  • Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63–88

    Article  CAS  Google Scholar 

  • Shydlovska O et al (2017) Synthesis and comparative characteristics of biological activities of (La, Sr)MnO3 and Fe3O4 nanoparticles. Eur J Nanomed 9:33–43

    Article  CAS  Google Scholar 

  • Sierra LM, Gaivão I (2014) Genotoxicity and DNA repair: a practical approach. Methods in pharmacology and toxicology. Humana Press

    Google Scholar 

  • Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21:16819

    Article  CAS  Google Scholar 

  • Singh N et al (2017) Exposure to engineered nanomaterials: impact on DNA Repair Pathways. Int J Mol Sci 18

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Singh N et al (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  • Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358

    Article  CAS  Google Scholar 

  • Sitbon G et al (2014) Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application. Nanoscale 6:9264–9272

    Article  CAS  Google Scholar 

  • Skehan P et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  Google Scholar 

  • Soenen SJH, Nuytten N, De Meyer SF, De Smedt SC, De Cuyper M (2010) High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 6:832–842

    Article  CAS  Google Scholar 

  • Stafford S et al (2018) Multimodal magnetic-plasmonic nanoparticles for biomedical applications. Appl Sci 8:97

    Article  CAS  Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20

    Article  CAS  Google Scholar 

  • Stevenson R, Hueber AJ, Hutton A, McInnes IB, Graham D (2011) Nanoparticles and inflammation. Sci World J 11:1300–1312

    Article  CAS  Google Scholar 

  • Stocke NA et al (2017) Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer. Biomaterials. https://doi.org/10.1016/j.biomaterials.2016.12.019

    Article  Google Scholar 

  • Stoddart MJ (2011) Mammalian cell viability: methods and protocols. Methods in molecular biology, vol 740. Humana Press

    Google Scholar 

  • Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol. https://doi.org/10.1083/jcb.115.5.1383

    Article  Google Scholar 

  • Stroh A et al (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984

    Article  CAS  Google Scholar 

  • Sun C et al (2008) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine 3:495–505

    Article  CAS  Google Scholar 

  • Sutariya VB et al (2015) Introduction—biointeractions of nanomaterials challenges and solutions. In: Sutariya VB, Pathak Y (eds) Biointeractions of nanomaterials, pp 1–48. CRC Press

    Google Scholar 

  • Sutariya VB, Pathak Y (2014) Biointeractions of nanomaterials. Biointeractions of Nanomaterials. https://doi.org/10.1201/b17191

    Article  Google Scholar 

  • Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. In: Satyanarayanajois S (ed) Drug design and discovery: methods and protocols. Methods in molecular biology, vol 716. Humana Press, pp 157–168. https://doi.org/10.1007/978-1-61779-012-6_9

  • Tasso M et al (2015) Sulfobetaine-vinylimidazole block copolymers: a robust quantum dot surface chemistry expanding bioimaging’s horizons. ACS Nano 9:11479–11489

    Article  CAS  Google Scholar 

  • Teeguarden JG et al (2014) Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Part Fibre Toxicol 11:1–18

    Article  CAS  Google Scholar 

  • Territo MC, Cline MJ (1975) Mononuclear phagocyte proliferation, maturation and function. Clin Haematol 4:685–703

    CAS  Google Scholar 

  • Theumer A et al (2015) Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids. J Magn Magn Mater 380:27–33

    Article  CAS  Google Scholar 

  • Thorek DLJ, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–3590

    Article  CAS  Google Scholar 

  • Thu MS et al (2009) Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS One 4:e7218

    Google Scholar 

  • Tice RR et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  • Timmins NE, Nielsen LK (2007) Generation of multicellular tumor spheroids by the hanging-drop method. Tissue Eng. https://doi.org/10.1007/978-1-59745-443-8_8

  • Tominaga H et al (1999) A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36:47–50

    Article  CAS  Google Scholar 

  • Tomitaka A et al (2019) Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today 24:873–882

    Article  CAS  Google Scholar 

  • Tse BW-C et al (2015) PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine 10:375–386

    Article  CAS  Google Scholar 

  • Turiel-Fernández D, Bettmer J, Montes-Bayón M (2018) Evaluation of the uptake, storage and cell effects of nano-iron in enterocyte-like cell models. J Trace Elem Med Biol 49:98–104

    Article  CAS  Google Scholar 

  • Twigg RS (1945) Oxidation-reduction aspects of resazurin. Nature 155:401–402

    Article  CAS  Google Scholar 

  • Vedantam P, Huang G, Tzeng TRJ (2013) Size-dependent cellular toxicity and uptake of commercial colloidal gold nanoparticles in DU-145 cells. Cancer Nanotechnol 4:13–20

    Article  CAS  Google Scholar 

  • Veiseh O et al (2009a) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 69:6200–6207

    Article  CAS  Google Scholar 

  • Veiseh O et al (2009b) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-1157

    Article  Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  CAS  Google Scholar 

  • Vinci M et al (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. https://doi.org/10.1186/1741-7007-10-29

    Article  Google Scholar 

  • Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  Google Scholar 

  • Wan R et al (2017) Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 14:38

    Article  CAS  Google Scholar 

  • Wang B et al (2009) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanoparticle Res 11:41–53

    Article  CAS  Google Scholar 

  • Wang X et al (2012) Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials. https://doi.org/10.1016/j.biomaterials.2012.01.058

    Article  Google Scholar 

  • Wang D et al (2014) Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 8:6620–6632

    Article  CAS  Google Scholar 

  • Wang Q et al (2015) Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast. Sci Rep 5:1–8

    Google Scholar 

  • Wang F, Salvati A, Boya P (2018) Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol 8

    Google Scholar 

  • Warren EAK, Payne CK (2015) Cellular binding of nanoparticles disrupts the membrane potential. RSC Adv 5:13660–13666

    Article  CAS  Google Scholar 

  • Wei Y et al (2016) Iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment. Sci Rep 6:29110

    Article  CAS  Google Scholar 

  • Weir MP, Gibson JF, Peters TJ (1984) Haemosiderin and tissue damage. Cell Biochem Funct. https://doi.org/10.1002/cbf.290020402

    Article  Google Scholar 

  • Weselsky P (1871) Ueber die Azoverbindungen des Resorcins. Berichte der Dtsch Chem Gesellschaft 4:613–619

    Article  Google Scholar 

  • Wȩsierska-Ga̧dek J, Gueorguieva M, Ranftler C, Zerza-Schnitzhofer G (2005) A new multiplex assay allowing simultaneous detection of the inhibition of cell proliferation and induction of cell death. J Cell Biochem 96:1–7

    Google Scholar 

  • Wittekind D (2003) Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. Value and limitations of the hematoxylin-eosin stain. Biotech Histochem 78:261–270

    Google Scholar 

  • Wolff I, Müller P (2006) Micronuclei and comet assay. In: Celis JE (2006) Cell biology: a laboratory handbook, vol 1. Elsevier Academic Press, pp 325–331

    Google Scholar 

  • Woolston C, Martin S (2011) Analysis of tumor and endothelial cell viability and survival using sulforhodamine B and clonogenic assays. In: Stoddart MJ (ed) Mammalian cell viability: methods and protocols. Methods in molecular biology, vol 740; Humana Press, pp 45–56. https://doi.org/10.1007/978-1-61779-108-6_7

  • Wottrich R, Diabate S, Krug HF (2004) Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Heal 207:353–361

    Article  CAS  Google Scholar 

  • Wu Y et al (2009) Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds. Toxicol Vitr 23:1170–1178

    Article  CAS  Google Scholar 

  • Wu K, Su D, Liu J, Saha R, Wang J-P (2018) Magnetic nanoparticles in nanomedicine

    Google Scholar 

  • Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    Article  CAS  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  Google Scholar 

  • Xie Y et al (2016) Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int J Nanomed 11:3557–3570

    Article  CAS  Google Scholar 

  • Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 65:121–138

    Article  CAS  Google Scholar 

  • Xuan S et al (2011) Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3:237–244

    Article  CAS  Google Scholar 

  • Yallapu MM et al (2015) Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials 46:1–12

    Article  CAS  Google Scholar 

  • Yang S-A, Choi S, Jeon SM, Yu J (2018) Silica nanoparticle stability in biological media revisited. Sci Rep 8:185

    Article  CAS  Google Scholar 

  • Yu W et al (2007) Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol Biol Cell. https://doi.org/10.1091/mbc.e06-11-1052

    Article  Google Scholar 

  • Zanoni M et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. https://doi.org/10.1038/srep19103

    Article  Google Scholar 

  • Zelazna K, Rudnicka K, Tejs S (2011) In vitro micronucleus test assessment of polycyclic aromatic hydrocarbons. Environ Biotechnol 7

    Google Scholar 

  • Zhang X-Q et al (2012a) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363

    Article  CAS  Google Scholar 

  • Zhang T et al (2012b) Evaluation on cytotoxicity and genotoxicity of the l-glutamic acid coated iron oxide nanoparticles. J Nanosci Nanotechnol 12:2866–2873

    Article  CAS  Google Scholar 

  • Zhang M, Xu C, Jiang L, Qin J (2018) A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res. https://doi.org/10.1039/c8tx00156a

    Article  Google Scholar 

  • Zhen X, Cheng P, Pu K (2019) Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 15:1804105

    Article  CAS  Google Scholar 

  • Zheng X-C et al (2018) The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int J Nanomed 13:1495–1504

    Article  CAS  Google Scholar 

  • Zhu MT et al (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–111

    Article  CAS  Google Scholar 

  • Zhu M-T et al (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol Lett 203:162–171

    Article  CAS  Google Scholar 

  • Zhu M et al (2013a) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631

    Article  CAS  Google Scholar 

  • Zhu L et al (2013b) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Rel 169:228–238

    Article  CAS  Google Scholar 

  • Zou P et al (2010) Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 7:1974–1984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.S.P. and M.T. thank INIFTA, UNLP, and CONICET for their support. A.S.P and M.T. are CONICET fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin S. Picco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tasso, M., Lago Huvelle, M.A., Diaz Bessone, I., Picco, A.S. (2020). Toxicity Assessment of Nanomaterials. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_13

Download citation

Publish with us

Policies and ethics