Skip to main content
Log in

Characterization of Superparamagnetic Nanoparticle Interactions with Extracellular Matrix in an in Vitro System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Controlled dispersion of therapeutic agents within liquid- and gel-filled cavities represents a barrier to treatment of some cancers and other pathological states. Interstitial delivery is compromised by the poor mobility of macromolecules and larger nanoscale structures. We developed an in vitro system to quantify the suitability of superparamagnetic nanoparticles (SPM NPs) as a site-specific therapeutic vehicle for delivery through fluid- and gel-based systems. SPM NP motion was induced by an external magnetic field. NP migration was modulated by NP concentration and surface coating. 135 nanometer radius PEGylated NPs moved through the extracellular matrix with an average velocity of 1.5 mm h−1, suitable for some clinical applications. Increasing the SPM NP radius to 400 nm while maintaining the same per NP magnetic susceptibility resulted in a greater than 1000-fold reduction in magnetic mobility, to less than 0.01 mm h−1. The critical influence of NP size on gel permeation was also observed in silica-coated 135 nm SPM NPs that aggregated under the experimental conditions. Aggregation played a critical role in determining the behavior of the nanoparticles. SPM NPs allow significant free-solution mobility to specific sites within a cavity and generate sufficient force to penetrate common in vivo gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. Allen, T. Particle size measurement. London; New York: Chapman and Hall 1990.

    Google Scholar 

  2. Banerjee, R. K., W. W. van Osdol, P. M. Bungay, C. Sung, and R. L. Dedrick. Finite element model of antibody penetration in a prevascular tumor nodule embedded in normal tissue. J. Control Release 74:193–202, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Bledsoe, A. W., G. Y. Gillespie, and C. D. Morrow. Targeted foreign gene expression in spinal cord neurons using poliovirus replicons. J. Neurovirol. 6:95–105, 2000.

    PubMed  CAS  Google Scholar 

  4. Boucher, Y., C. Brekken, P. A. Netti, L. T. Baxter, and R. K. Jain. Intratumoral infusion of fluid: Estimation of hydraulic conductivity and implications for the delivery of therapeutic agents. Br. J. Cancer 78:1442–1448, 1998.

    PubMed  CAS  Google Scholar 

  5. Flessner, M. F., R. L. Dedrick, and J. C. Reynolds. Bidirectional peritoneal transport of immunoglobulin in rats: Tissue concentration profiles. Am. J. Physiol. 263:F15–F23, 1992.

    PubMed  CAS  Google Scholar 

  6. Gutsmann, T., G. E. Fantner, J. H. Kindt, M. Venturoni, S. Danielsen, and P. K. Hansma. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J. 86:3186–3193, 2004.

    PubMed  CAS  Google Scholar 

  7. Holligan, D. L., G. T. Gillies, and J. P. Dailey. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology 14:661–666, 2003.

    Article  CAS  Google Scholar 

  8. Jaeger, H. M., and S. R. Nagel. Physics of the granular state. Science 255:1523–1531, 1992.

    Article  PubMed  Google Scholar 

  9. Jain, T. K., M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2:194–205, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, A. S., and R. Yuan. Hydrodynamic radius of an ideal aggregate with quadratically increasing permeability approach. J. Colloid Interface Sci., 285:627–633, 2005.

    Google Scholar 

  11. Kulkarni, P., and P. Biswas. A Brownian dynamics simulation to predict morphology of nanoparticle deposits in the presence of interparticle interactions. Aerosol Sci. Technol. 38:541–554, 2004.

    Article  CAS  Google Scholar 

  12. Leakakos, T., C. Ji, G. Lawson, C. Peterson, and S. Goodwin. Intravesical administration of doxorubicin to swine bladder using magnetically targeted carriers. Cancer Chemother Pharmacol. 51:445–450, 2003.

    PubMed  CAS  Google Scholar 

  13. Leunig, M., F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer, and R. K. Jain. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52:6553–6560, 1992.

    PubMed  CAS  Google Scholar 

  14. Li, X. Y., and B. E. Logan. Collision frequencies of fractal aggregates with small particles by differential sedimentation. Environ. Sci. Technol. 31:1229–1236, 1997.

    Article  CAS  Google Scholar 

  15. Lichtenbeld, H. C., F. Yuan, C. C. Michel, and R. K. Jain, Perfusion of single tumor microvessels: Application to vascular permeability measurement. Microcirculation 3:349–357, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Loth, F., M. A. Yardimci, and N. Alperin. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123:71–79, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Lubbe, A. S., C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. J. Lemke, D. Ohlendorf, W. Huhnt, and D. Huhn. Clinical experiences with magnetic drug targeting: A phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56:4686–4693, 1996.

    PubMed  CAS  Google Scholar 

  18. McGuire, S., and F. Yuan. Quantitative analysis of intratumoral infusion of color molecules. Am. J. Physiol. Heart Circulat. Physiol. 281:H715–H721, 2001.

    CAS  Google Scholar 

  19. Monsky, W. L., D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchilin, F. Yuan, and R. K. Jain. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59:4129–4135, 1999.

    PubMed  CAS  Google Scholar 

  20. Monsky, W. L., F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl. Acad. Sci. U.S.A. 95:4607–4612, 1998.

    Article  PubMed  Google Scholar 

  21. Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503, 2000.

    PubMed  CAS  Google Scholar 

  22. Ohno, M., N. Ohno, and N. A. Kefalides. Studies on human laminin and laminin-collagen complexes. Connect Tissue Res. 25:251–263, 1991.

    PubMed  CAS  Google Scholar 

  23. Olmsted, S. S., J. L. Padgett, A. I. Yudin, K. J. Whaley, T. R. Moench, and R. A. Cone. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 81:1930–1937, 2001.

    PubMed  CAS  Google Scholar 

  24. Paige, M. F., J. K. Rainey, and M. C. Goh. Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy. Biophys. J. 74:3211–3216, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Paulsson, M., P. D. Yurchenco, G. C. Ruben, J. Engel, and R. Timpl. Structure of low density heparan sulfate proteoglycan isolated from a mouse tumor basement membrane. J. Mol. Biol. 197:297–313, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Peira, E., P. Marzola, V. Podio, S. Aime, A. Sbarbati, and M. R. Gasco. In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide. J. Drug Target. 11:19–24, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Pluen, A., Y. Boucher, S. Ramanujan, T. D. McKee, T. Gohongi, E. di Tomaso, E. B. Brown, Y. Izumi, R. B. Campbell, D. A. Berk, and R. K. Jain. Role of tumor–host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. U.S.A. 98:4628–4633, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Puertas, A. M., A. Fernandez-Barbero, F. J. da las Nieves, and L. F. Rull. Colloidal aggregation induced by long range attractions. Langmuir 20:9861–9867, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Ramanujan, S., A. Pluen, T. D. McKee, E. B. Brown, Y. Boucher, and R. K. Jain. Diffusion and convection in collagen gels: Implications for transport in the tumor interstitium. Biophys. J. 83:1650–1660, 2002.

    PubMed  CAS  Google Scholar 

  30. Sanders, N. N., S. C. De Smedt, E. Van Rompaey, P. Simoens, F. De Baets, and J. Demeester. Cystic fibrosis sputum: A barrier to the transport of nanospheres. Am. J. Respir. Crit. Care Med. 162:1905–1911, 2000.

    PubMed  CAS  Google Scholar 

  31. Seisenberger, G., M. U. Ried, T. Endress, H. Buning, M. Hallek, and C. Brauchle. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Torchia, M. G., R. Nason, R. Danzinger, J. M. Lewis, and J. A. Thliveris. Interstitial MR lymphangiography for the detection of sentinel lymph nodes. J. Surg. Oncol. 78:151–156, discussion 157, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Tseng, W. J., and K. C. Lin. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mat. Sci. Eng. A 355:186–192, 2003.

    Article  CAS  Google Scholar 

  34. Yuan, F., A. Krol, and S. Tong. Available space and extracellular transport of macromolecules: Effects of pore size and connectedness. Ann. Biomed. Eng. 29:1150–1158, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Yuan, F., M. Leunig, D. A. Berk, and R. K. Jain. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res. 45:269–289, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Yuan, F., H. A. Salehi, Y. Boucher, U. S. Vasthare, R. F. Tuma, and R. K. Jain. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54:4564–4568, 1994.

    PubMed  CAS  Google Scholar 

  37. Zborowski, M., C. B. Fuh, R. Green, L. Sun, and J. J. Chalmers. Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal. Chem. 67:3702–3712, 1995.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, X. Y., J. Luck, M. W. Dewhirst, and F. Yuan. Interstitial hydraulic conductivity in a fibrosarcoma. Am. J. Physiol. Heart Circulat. Physiol. 279:H2726–H2734, 2000.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the technical assistance of R. Chen Chun-Cheng, Jordan Bush, Edwin Donnelly, Ling Geng, and Allie Fu. This study was supported by U.S. Army Medical Research and Materiel Command BCRP-CDMRP: BC023387, Vanderbilt Institute for Nanoscale Science and Engineering (VINSE), NIH grants CA58508, CA70937, CA88076, CA89674, CA89888, P50-CA90949, and Vanderbilt-Ingram Cancer Center, CCSG P30-CA68485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Giorgio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, S.J., Hallahan, D.E. & Giorgio, T.D. Characterization of Superparamagnetic Nanoparticle Interactions with Extracellular Matrix in an in Vitro System. Ann Biomed Eng 34, 51–58 (2006). https://doi.org/10.1007/s10439-005-9004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9004-5

Keywords

Navigation