Skip to main content

Global Transcriptional Regulators Involved in Carbon, Nitrogen, Phosphorus, and Sulfur Metabolisms in Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Bacteria are equipped with sophisticated metabolic control systems to adapt to variable nutrient conditions. While metabolic pathways are controlled at enzyme activity levels and at mRNA levels, scarcity in preferred nutrients causes transcriptional induction of genes for alternative nutrient source utilization. Transcriptional regulatory systems controlling metabolisms of carbon, nitrogen, phosphate, and sulfur in Corynebacterium glutamicum have been extensively studied for the last two decades. The knowledge of the regulators, including regulon members, operator sequences, and effectors, has deepened our understanding of the C. glutamicum physiology and has led to develop synthetic biology tools for metabolic engineering, maximizing the C. glutamicum potential as a production host. In this chapter, we review the studies of the transcriptional regulators, especially focus on those with global regulatory roles in the primary metabolism in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189:7408–7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auchter M, Arndt A, Eikmanns BJ (2009) Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140:84–91

    Article  CAS  PubMed  Google Scholar 

  • Auchter M et al (2011a) RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 154:126–139

    Article  CAS  PubMed  Google Scholar 

  • Auchter M et al (2011b) Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum. J Biotechnol 152:77–86

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  • Bartek T et al (2010) Studies on substrate utilisation in L: -valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst Eng 33:873–8883

    Article  CAS  PubMed  Google Scholar 

  • Bäumchen C, Krings E, Bringer S, Eggeling L, Sahm H (2009) Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum. FEMS Microbiol Lett 290:227–235

    Article  PubMed  CAS  Google Scholar 

  • Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J (2013) IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria. BMC Biol 11:122. https://doi.org/10.1186/1741-7007-11-122

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckers G et al (2005) Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol 58:580–595

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Cramer A, Eikmanns BJ, Schreiner M (2009) RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 16:236–239

    Article  CAS  PubMed  Google Scholar 

  • Bott M, Brocker M (2012) Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 94:1131–1150. https://doi.org/10.1007/s00253-012-4060-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkrolf K et al (2008) The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology 154:1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Brown SW, Sonenshein AL (1996) Autogenous regulation of the Bacillus subtilis glnRA operon. J Bacteriol 178:2450–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A, Tauch A (2006) The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brüsseler C, Radek A, Tenhaef N, Krumbach K, Noack S, Marienhagen J (2018) The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. Bioresour Technol 249:953–961. https://doi.org/10.1016/j.biortech.2017.10.098

    Article  CAS  PubMed  Google Scholar 

  • Buchinger S et al (2009) A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR. J Biotechnol 140:68–74

    Article  CAS  PubMed  Google Scholar 

  • Busche T, Šilar R, Pičmanová M, Pátek M, Kalinowski J (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13:445. https://doi.org/10.1186/1471-2164-13-445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussmann M, Emer D, Hasenbein S, Degraf S, Eikmanns BJ, Bott M (2009) Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 143:173–182

    Article  CAS  PubMed  Google Scholar 

  • Cha PH et al (2010) Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl Microbiol Biotechnol 85:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Lee SG, Hyeon JE, Han SO (2010) Identification and characterization of a transcriptional regulator, SucR, that influences sucCD transcription in Corynebacterium glutamicum. Biochem Biophys Res Commun 401:300–305

    Article  CAS  PubMed  Google Scholar 

  • Claes WA, Pühler A, Kalinowski J (2002) Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J Bacteriol 184:2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocaign-Bousquet M, Monnet C, Lindley ND (1993) Batch kinetics of Corynebacterium glutamicum during growth on various carbon substrates: use of substrate mixtures to localise metabolic bottlenecks. Appl Microbiol Biotechnol 40:526–530

    Google Scholar 

  • Costa-Riu N, Maier E, Burkovski A, Krämer R, Lottspeich F, Benz R (2003) Identification of an anion-specific channel in the cell wall of the Gram-positive bacterium Corynebacterium glutamicum. Mol Microbiol 50:1295–1308

    Article  CAS  PubMed  Google Scholar 

  • Cramer A, Eikmanns BJ (2007) RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation. J Mol Microbiol Biotechnol 12:51–59

    Article  CAS  PubMed  Google Scholar 

  • Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ (2006) Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 188:2554–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A (2009) Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum. Microbiology 155:1360–1375

    Article  CAS  PubMed  Google Scholar 

  • Dominguez H, Cocaign-Bousquet M, Lindley ND (1997) Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glultamicum. Appl Microbiol Biotechnol 47:600–603

    Article  CAS  Google Scholar 

  • Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H (2008) Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74:5146–5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engels V, Wendisch VF (2007) The DeoR-Type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol 189:2955–2966. https://doi.org/10.1128/jb.01596-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engels V, Lindner SN, Wendisch VF (2008) The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J Bacteriol 190:8033–8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher SH, Wray LV Jr (2008) Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci U S A 105:1014–1019. https://doi.org/10.1073/pnas.0709949105

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher SH, Wray LV Jr (2009) Novel trans-acting Bacillus subtilis glnA mutations that derepress glnRA expression. J Bacteriol 191:2485–2492. https://doi.org/10.1128/JB.01734-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frunzke J, Engels V, Hasenbein S, Gatgens C, Bott M (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322

    Article  CAS  PubMed  Google Scholar 

  • Gaigalat L et al (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Y-G et al (2008) Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res 36:7110–7123. https://doi.org/10.1093/nar/gkn827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgi T, Engels V, Wendisch VF (2008) Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol 190:963–971

    Article  CAS  PubMed  Google Scholar 

  • Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SO, Inui M, Yukawa H (2007) Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology 153:2190–2202

    Article  CAS  PubMed  Google Scholar 

  • Han SO, Inui M, Yukawa H (2008) Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology 154:3073–3083

    Article  CAS  PubMed  Google Scholar 

  • Han G, Hu X, Qin T, Li Y, Wang X (2016) Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine. Enzym Microb Technol 83:14–21. https://doi.org/10.1016/j.enzmictec.2015.11.001

    Article  CAS  Google Scholar 

  • Hasselt K, Rankl S, Worsch S, Burkovski A (2011) Adaptation of AmtR-controlled gene expression by modulation of AmtR binding activity in Corynebacterium glutamicum. J Biotechnol 154:156–162. https://doi.org/10.1016/j.jbiotec.2010.09.930

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M et al (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM (2013) Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. J Bacteriol 195:2573–2584. https://doi.org/10.1128/JB.01629-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffelder M, Raasch K, van Ooyen J, Eggeling L (2010) The E2 domain of OdhA of Corynebacterium glutamicum has succinyltransferase activity dependent on lipoyl residues of the acetyltransferase AceF. J Bacteriol 192:5203–5211. https://doi.org/10.1128/JB.00597-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451. https://doi.org/10.1007/s00253-011-3210-x

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  • Inui M et al (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504. https://doi.org/10.1099/mic.0.2006/005587-0

    Article  CAS  PubMed  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Dossonnet V, Küster E, Hillen W, Deutscher J, Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535. https://doi.org/10.1074/jbc.272.42.26530

    Article  CAS  PubMed  Google Scholar 

  • Jungwirth B et al (2013) High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology 159:12–22. https://doi.org/10.1099/mic.0.062059-0

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Vèrtes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L: -arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Kertesz MA (2000) Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175. https://doi.org/10.1016/S0168-6445(99)00033-9

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim TH, Kim Y, Lee HS (2004) Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186:3453–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M (2013) Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. J Bacteriol 195:4283–4296. https://doi.org/10.1128/JB.00265-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kočan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch DJ et al (2005a) The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58:480–494

    Article  CAS  PubMed  Google Scholar 

  • Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J (2005b) Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol 71:6104–6114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl TA, Tauch A (2009) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143:239–246

    Article  CAS  PubMed  Google Scholar 

  • Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92:502–517

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H (2007) Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol 76:1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Krause JP, Polen T, Youn JW, Emer D, Eikmanns BJ, Wendisch VF (2012) Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum. J Biotechnol 159:204–215

    Article  CAS  PubMed  Google Scholar 

  • Krings E et al (2006) Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J Bacteriol 188:8054–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronemeyer W, Peekhaus N, Krämer R, Sahm H, Eggeling L (1995) Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol 177:1152–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug A, Wendisch VF, Bott M (2005) Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem 280:585–595

    Article  CAS  PubMed  Google Scholar 

  • Laslo T et al (2012) Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR. J Bacteriol 194:941–955. https://doi.org/10.1128/JB.06064-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF (2007) NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol 73:5026–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF (2009) Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl Environ Microbiol 75:3161–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581. https://doi.org/10.1128/AEM.02713-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194. https://doi.org/10.1016/j.ymben.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65

    Article  CAS  PubMed  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morabbi Heravi K, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J (2015) Transcriptional regulation of the vanillate utilization genes (vanABK operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor. J Bacteriol 197:959–972. https://doi.org/10.1128/JB.02431-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muffler A et al (2002) Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268

    Article  CAS  PubMed  Google Scholar 

  • Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14:449–457. https://doi.org/10.1016/j.ymben.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  • Nentwich SS et al (2009) Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology 155:150–164

    Article  CAS  PubMed  Google Scholar 

  • Neshat A, Mentz A, Rückert C, Kalinowski J (2014) Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J Biotechnol 190:55–63. https://doi.org/10.1016/j.jbiotec.2014.05.033

    Article  CAS  PubMed  Google Scholar 

  • Nešvera J, Pátek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90:1641–1654

    Article  PubMed  CAS  Google Scholar 

  • Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 70:7148–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ninfa AJ, Jiang P, Atkinson MR, Peliska JA (2000) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Top Cell Regul 36:31–75

    Article  CAS  PubMed  Google Scholar 

  • Nolden L, Ngouoto-Nkili CE, Bendt AK, Krämer R, Burkovski A (2001) Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42:1281–1295

    Article  CAS  PubMed  Google Scholar 

  • Omumasaba CA, Okai N, Inui M, Yukawa H (2004) Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J Mol Microbiol Biotechnol 8:91–103

    Article  CAS  PubMed  Google Scholar 

  • Palanca C, Rubio V (2016) Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms. FEBS J 283:1039–1059. https://doi.org/10.1111/febs.13643

    Article  CAS  PubMed  Google Scholar 

  • Panhorst M, Sorger-Herrmann U, Wendisch VF (2011) The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J Biotechnol 154:149–155. https://doi.org/10.1016/j.jbiotec.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  • Parche S, Burkovski A, Sprenger GA, Weil B, Krämer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428

    CAS  PubMed  Google Scholar 

  • Park SY, Moon MW, Subhadra B, Lee JK (2010) Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol Lett 304:107–115

    Article  CAS  PubMed  Google Scholar 

  • Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–113

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Okai N, Vertès A, Inatomi K, Inui M, Yukawa H (2011) Characterization of the mannitol catabolic operon of Corynebacterium glutamicum. Appl Microbiol Biotechnol 91:1375–1387. https://doi.org/10.1007/s00253-011-3352-x

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF (2018) Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Front Microbiol 9:2589. https://doi.org/10.3389/fmicb.2018.02589

    Article  PubMed  PubMed Central  Google Scholar 

  • Plassmeier P, Persicke M, Pühler A, Sterthoff C, Rückert C, Kalinowski J (2012) Molecular characterization of PrpR, the transcriptional activator of propionate catabolism in Corynebacterium glutamicum. J Biotechnol 159:1–11

    Article  CAS  PubMed  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Mol Biol Rev 57:543–594

    CAS  Google Scholar 

  • Reddy P, Kamireddi M (1998) Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 180:732–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm N et al (2010) L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing. Microbiology 156:3180–3193. https://doi.org/10.1099/mic.0.040667-0

    Article  CAS  PubMed  Google Scholar 

  • Rey DA, Pühler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103:51–65

    Article  CAS  PubMed  Google Scholar 

  • Rey DA et al (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887

    Article  CAS  PubMed  Google Scholar 

  • Rittmann D, Sorger-Herrmann U, Wendisch VF (2005) Phosphate starvation-inducible gene ushA encodes a 5' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl Environ Microbiol 71:4339–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104:213–228

    Article  PubMed  CAS  Google Scholar 

  • Rückert C et al (2005) Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rückert C, Milse J, Albersmeier A, Koch DJ, Pühler A, Kalinowski J (2008) The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 9:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos-Beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402. https://doi.org/10.3389/fmicb.2015.00402

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaaf S, Bott M (2007) Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol 189:5002–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    Article  PubMed  CAS  Google Scholar 

  • Schulte J, Baumgart M, Bott M (2017a) Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum. J Biotechnol 258:33–40. https://doi.org/10.1016/j.jbiotec.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  • Schulte J, Baumgart M, Bott M (2017b) Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol 103:534–552. https://doi.org/10.1111/mmi.13574

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T (2015) Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev 29:451–464. https://doi.org/10.1101/gad.254714.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwinde JW, Thum-Schmitz N, Eikmanns BJ, Sahm H (1993) Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum. J Bacteriol 175:3905–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorger-Herrmann U, Taniguchi H, Wendisch VF (2015) Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB. BMC Microbiol 15:113. https://doi.org/10.1186/s12866-015-0437-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strösser J, Ludke A, Schaffer S, Kramer R, Burkovski A (2004) Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 54:132–147

    Article  PubMed  CAS  Google Scholar 

  • Subhadra B, Lee JK (2013) Elucidation of the regulation of ethanol catabolic genes and ptsG using a glxR and adenylate cyclase gene (cyaB) deletion mutants of Corynebacterium glutamicum ATCC 13032. J Microbiol Biotechnol 23:1683–1690

    Article  CAS  PubMed  Google Scholar 

  • Suda M, Teramoto H, Imamiya T, Inui M, Yukawa H (2008) Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl Microbiol Biotechnol 81:505–513

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Inada T, Postma P, Aiba H (1998) CRP down-regulates adenylate cyclase activity by reducing the level of phosphorylated IIAGlc, the glucose-specific phosphotransferase protein, in Escherichia coli. Mol Gen Genet 259:317–326

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Okai N, Teramoto H, Inui M, Yukawa H (2008a) Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Microbiology 154:264–274

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Teramoto H, Inui M, Yukawa H (2008b) Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:309–318

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Teramoto H, Inui M, Yukawa H (2009) Identification of a second beta-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology 155:3652–3660

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ehira S, Teramoto H, Inui M, Yukawa H (2012) Coordinated regulation of gnd, which encodes 6-phosphogluconate dehydrogenase, by the two transcriptional regulators GntR1 and RamA in Corynebacterium glutamicum. J Bacteriol 194:6527–6536. https://doi.org/10.1128/JB.01635-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Takemoto N, Ito T, Teramoto H, Yukawa H, Inui M (2014) Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum. J Bacteriol 196:3249–3258. https://doi.org/10.1128/JB.01860-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teramoto H, Inui M, Yukawa H (2009) Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3461–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2008) Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl Microbiol Biotechnol 81:291–301

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2009a) Involvement of the LuxR-type transcriptional regulator, RamA, in regulation of expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J Bacteriol 191:968–977

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2009b) The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR. J Bacteriol 191:4251–4258. https://doi.org/10.1128/jb.00303-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2009c) Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Appl Microbiol Biotechnol 83:315–327

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Teramoto H, Inui M, Yukawa H (2011) Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J Bacteriol 193:4123–4133. https://doi.org/10.1128/JB.00384-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda K, Teramoto H, Yukawa H, Inui M (2015) Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J Bacteriol 197:483–496. https://doi.org/10.1128/JB.02248-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Ooyen J, Emer D, Bussmann M, Bott M, Eikmanns BJ, Eggeling L (2011) Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J Biotechnol 154:140–148

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF, Bott M (2008) Phosphorus metabolism and its regulation. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic Press, pp 203–216

    Google Scholar 

  • Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168:262–269

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508

    Article  CAS  PubMed  Google Scholar 

  • Wray LV Jr, Zalieckas JM, Fisher SH (2001) Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell 107:427–435

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang J, Liu D, Zhang W (2016) Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS(Glc)) genes. Can J Microbiol 62:983–992. https://doi.org/10.1139/cjm-2016-0027

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Yamaguchi H, Kinehara M, Ohki YH, Nakaura Y, Fujita Y (2003) Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol 49:157–165

    Article  CAS  PubMed  Google Scholar 

  • Yukawa H et al (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xu G, Shi J, Xu Z (2018) Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol 102:5939–5951. https://doi.org/10.1007/s00253-018-9025-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Inui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toyoda, K., Inui, M. (2020). Global Transcriptional Regulators Involved in Carbon, Nitrogen, Phosphorus, and Sulfur Metabolisms in Corynebacterium glutamicum . In: Inui, M., Toyoda, K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-39267-3_5

Download citation

Publish with us

Policies and ethics