Skip to main content

Enzymatic Processes of Dietary Fibers

  • Chapter
  • First Online:
Science and Technology of Fibers in Food Systems

Part of the book series: Food Engineering Series ((FSES))

Abstract

Different types of dietary fibers, such as fruits fibers, inulin and gums, are incorporated into foods not only due to their functional and technological properties (e.g. gelling or thickening properties), but also due to their numerous nutritional benefits. Often, the structure of these compounds, in their native forms, is such that they are not able to provide suitable functional properties when they are incorporated into foods. Thus, they are modified using physical, chemical or enzymatic means. Enzymatic processes are considered an ecofriendly option in many processes carried out in the food industry. Particularly, enzymes are an important tool for extracting fibers from different sources, such as fruit and vegetables waste, cereal bran, etc., and also for modifying their functional and/or nutritional properties. Enzymes involved in enzymatic processes to extract and modify fibers as well as fiber-enriched products and by-products are reviewed and discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Nasser NH, El-Shafei HA (1994) Enzymatic hydrolysis of cellulose and related materials by Streptomyces species. Microbiol Res 149(2):151–156

    Article  CAS  Google Scholar 

  • Aberer W, Hahn M, Klade M, Seebacher U, Spök A, Wallner K, Witzani H (2002) Collection of information on enzymes. European Commission. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Acourene S, Amourache L, Benchabane A, Djaafri K (2013) Utilisation of date wastes as substrate for the production of α-amylase. Int Food Res J 20(3):1367–1372

    CAS  Google Scholar 

  • Aliyu S, Bala M (2011) Brewer’s spent grain: a review of its potentials and applications. Afr J Biotechnol 10(3):324–331

    CAS  Google Scholar 

  • Alkasrawi M, Abu Jrai A, Al-Muhtaseb AH (2013) Simultaneous saccharification and fermentation process for ethanol production from steam-pretreated softwood: recirculation of condensate streams. Chem Eng J 225:574–579

    Article  CAS  Google Scholar 

  • Arsad P, Sukor R, Wan Ibadullah W, Mustapha N, Meor Hussin A (2015) Effects of enzymatic treatment on physicochemical properties of sugar palm fruit juice. Int J Adv Sci Eng Inf Technol 5(5):308–312

    Article  Google Scholar 

  • Babbar N, Baldassarre S, Maesen M, Prandi B, Dejonghe W, Sforza S, Elst K (2016) Enzymatic production of pectic oligosaccharides from onion skins. Carbohydr Polym 146:245–252

    Article  CAS  PubMed  Google Scholar 

  • Beltramino F, Roncero MB, Torres AL, Vidal T, Valls C (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789

    Article  CAS  Google Scholar 

  • Bender D, Nemeth R, Wimmer M, Götschhofer S, Biolchi M, Török K, Schoenlechner R (2017) Optimization of Arabinoxylan isolation from Rye bran by adapting extraction solvent and use of enzymes. J Food Sci 82(11):2562–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonechi C, Consumi M, Donati A, Leone G, Magnani A, Tamasi G, Rossi C (2017) Biomass: an overview. In: Francesco D, Angelo B, Rossi C (eds) Bioenergy systems for the future: prospects for biofuels and biohydrogen. Elsevier Ltd, pp 3–42

    Google Scholar 

  • Botella C, De Ory I, Webb C, Cantero D, Blandino A (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26(2–3):100–106

    Article  CAS  Google Scholar 

  • Canela-Xandri A, Balcells M, Villorbina G, Cubero MÁ, Canela-Garayoa R (2018) Effect of enzymatic treatments on dietary fruit fibre properties. Biocatal Biotransformation 36(2):172–179

    Article  CAS  Google Scholar 

  • Cantarel BI, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database CAZy: an expert resource for glycogenomics. Nucleic Acids Res 37(SUPPL. 1):233–238

    Article  CAS  Google Scholar 

  • Cantu-jungles TM, Caroline A, El-hindawy M, Barbara R, Zhang X, Cordeiro LMC, Iacomini M (2018) In vitro fermentation of Cookeina speciosa glucans stimulates the growth of the butyrogenic Clostridium cluster XIVa in a targeted way. Carbohydr Polym 183:219–229

    Article  CAS  PubMed  Google Scholar 

  • Chambers ES, Preston T, Frost G, Morrison DJ (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 7(4):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  CAS  PubMed  Google Scholar 

  • Chawla R, Patil GR (2010) Soluble dietary fiber. Compr Rev Food Sci Food Saf 9(2):178–196

    Article  CAS  Google Scholar 

  • Cheng L, Zhang X, Hong Y, Li Z, Li C, Gu Z (2017) Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. Int J Biol Macromol 101:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Duncan SH (2017) Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 93(11):1–9

    Article  CAS  Google Scholar 

  • Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CM, Gilbert HJ (2011) Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 286(25):22510–22520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui SW, Wu Y, Ding H (2013) The range of dietary fibre ingredients and a comparison of their technical functionality. In: Delcour J, Poutanen K (eds) Fibre-rich and wholegrain foods. Elsevier, pp 96–119

    Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Decker SR, Sheehan J, Dayton DC, Bozell JJ, Adney WS, Aden A, Himmel ME (2017) Biomass conversion. In: Kent JA, Bommaraju T, Barnicki SD (eds) Handbook of industrial chemistry and biotechnology. Springer International Publishing AG, pp 285–419

    Google Scholar 

  • Domingo CS, Soria M, Rojas AM, Fissore EN, Gerschenson LN (2015) Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. Int J Mol Sci 16(3):6057–6075

    Article  PubMed  CAS  Google Scholar 

  • Döring C, Jekle M, Becker T (2016) Technological and analytical methods for arabinoxylan quantification from cereals. Crit Rev Food Sci Nutr 56(6):999–1011

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos TC, Gomes DPP, Bonomo RCF, Franco M (2012) Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133(4):1299–1304

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives – biopolymers with valuable properties, 1: naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21(9):542–556

    Article  Google Scholar 

  • Ebringerová A, Hromádková Z, Heinze T (2005) In: Heinze T (ed) Polysacharides I. Structure, characterization and use. Springer, Berlin Heidelberg

    Google Scholar 

  • Edney BMJ, Marchylo BA, Macgregor AW (1991) Structure of total barley Beta-glucan. J Inst Brew 97:39–44

    Article  CAS  Google Scholar 

  • Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124(2):411–421

    Article  CAS  Google Scholar 

  • Escarnot E, Aguedo M, Paquot M (2012) Enzymatic hydrolysis of arabinoxylans from spelt bran and hull. J Cereal Sci 55(2):243–253

    Article  CAS  Google Scholar 

  • Falck P, Linares-Pastén JA, Karlsson EN, Adlercreutz P (2018) Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chem 242:579–584

    Article  CAS  PubMed  Google Scholar 

  • Faulds CB, Sancho AI, Bartolomé B (2003) Mono- and dimeric ferulic acid release from brewer’s spent grain by fungal feruloyl esterases. Appl Microbiol Biotechnol 60(4):489–493

    Google Scholar 

  • Forssell P, Kontkanen H, Schols HA, Hinz S, Eijsink VGH, Treimo J, Buchert J (2008) Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. J Inst Brew 114(4):306–314

    Article  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goñi I, Hervert-Hernández D (2011) By-products from plant foods are sources of dietary fibre and antioxidants. Phytochem Bioactivities and Impact on Health:95–116

    Google Scholar 

  • He YC, Ding Y, Xue YF, Yang B, Liu F, Wang C, Zhang DP (2015) Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresour Technol 193:324–330

    Article  CAS  PubMed  Google Scholar 

  • Ho YY, Lin CM, Wu MC (2017) Evaluation of the prebiotic effects of citrus pectin hydrolysate. J Food Drug Anal 25(3):550–558

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss AT, Olano-Martin E, Grace WE, Gibson GR, Rastall RA (2003) Pectic oligosaccharides as prebiotics. ACS Symp Ser 849:54–62

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Edney MJ (2003) Malt | chemistry of malting. Enc Food Sci Nutr:3677–3685

    Google Scholar 

  • Jaramillo PMD, Gomes HAR, Monclaro AV, Silva COG, Filho EXF (2015) Lignocellulose – degrading enzymes: an overview of the global market. In: Fungal biomolecules: sources, applications and recent developments, pp 75–85

    Google Scholar 

  • Kale MS, Yadav MP, Chau HK, Hotchkiss AT (2018) Molecular and functional properties of a xylanase hydrolysate of corn bran arabinoxylan. Carbohydr Polym 181:119–123

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S, Dharmesh SM (2017) Pectic oligosaccharide from tomato exhibiting anticancer potential on a gastric cancer cell line: structure-function relationship. Carbohydr Polym 160:52–61

    Article  CAS  PubMed  Google Scholar 

  • Khan GM, Khan NM, Khan ZU, Ali F, Jan AK, Muhammad N, Elahi R (2018) Effect of extraction methods on structural, physiochemical and functional properties of dietary fiber from defatted walnut flour. Food Sci Biotechnol 27(4):1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolenová K, Vršanská M, Biely P (2005) Purification and characterization of two minor endo-β-1,4-xylanases of Schizophyllum commune. Enzym Microb Technol 36(7):903–910

    Article  CAS  Google Scholar 

  • Lagaert S, Pollet A, Delcour JA, Lavinge R, Courtin CM, Volckaert G (2010) Substrate specificity of three recombinant α-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun. 402(4):644–650

    Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2(3):e201209017

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Xia J-l, Nie Z, Shan Y (2016) Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. LWT Food Sci Technol 69:203–210

    Article  CAS  Google Scholar 

  • Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YJ (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7(1):1–16

    Article  CAS  Google Scholar 

  • Luo X, Wang Q, Fang D, Zhuang W, Chen C, Jiang W, Zheng Y (2018) Modification of insoluble dietary fibers from bamboo shoot shell: structural characterization and functional properties. Int J Biol Macromol 120:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew 122(4):553–568

    Article  CAS  Google Scholar 

  • Maria T, Tsaniklidis G, Delis C, Nikolopoulou AE, Nikoloudakis N, Karapanos I, Aivalakis G (2016) Gene transcript accumulation and enzyme activity of β-amylases suggest involvement in the starch depletion during the ripening of cherry tomatoes. Plant Gene 5:8–12

    Article  CAS  Google Scholar 

  • Martín-Cuadrado AB, Fontaine T, Esteban PF, del Dedo JE, de Medina-Redondo M, del Rey F, de Aldana CRV (2008) Characterization of the endo-β-1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family. Fungal Genet Biol 45(4):542–553

    Google Scholar 

  • Mathew S, Karlsson EN, Adlercreutz P (2017) Extraction of soluble arabinoxylan from enzymatically pretreated wheat bran and production of short xylo-oligosaccharides and arabinoxylo-oligosaccharides from arabinoxylan by glycoside hydrolase family 10 and 11 endoxylanases. J Biotechnol 260:53–61

    Article  CAS  PubMed  Google Scholar 

  • Mendis M, Simsek S (2014) Arabinoxylans and human health. Food Hydrocoll 42(2):239–243

    Article  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277

    Article  CAS  PubMed  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178

    Article  CAS  PubMed  Google Scholar 

  • Morgan NK, Wallace A, Bedford MR, Choct M (2017) Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohydr Polym 167:290–296

    Article  CAS  PubMed  Google Scholar 

  • Morris C, Fichtel SL, Taylor AJ (2011) Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity, and thickness perception. Chemosens Percept 4(3):116–122

    Article  CAS  Google Scholar 

  • Mouyna I, Aimanianda V, Hartl L, Prevost MC, Sismeiro O, Dillies MA, Latgé JP (2016) GH16 and GH81 family β- 1,3 -glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell Microbiol 18(9):1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Mudgil D, Barak S (2013) Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 61:1–6

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Almagro N, Montilla A, Moreno FJ, Villamiel M (2017) Modification of citrus and apple pectin by power ultrasound: effects of acid and enzymatic treatment. Ultrason Sonochem 38:807–819

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. J Sci Food Agric 94(7):1264–1275

    Article  CAS  PubMed  Google Scholar 

  • Niemi P, Faulds CB, Sibakov J, Holopainen U, Poutanen K, Buchert J (2012) Effect of a milling pre-treatment on the enzymatic hydrolysis of carbohydrates in brewer’s spent grain. Bioresour Technol 116:155–160

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Domínguez M, de Eugenio LI, York-Durán MJ, Rodríguez-Colinas B, Plou FJ, Chenoll E, Jesús Martínez M (2017) Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chem 232:105–113

    Article  PubMed  CAS  Google Scholar 

  • Ninga KA, Sengupta S, Jain A, Desobgo ZSC, Nso EJ, De S (2018) Kinetics of enzymatic hydrolysis of pectinaceous matter in guava juice. J Food Eng 221:158–166

    Article  CAS  Google Scholar 

  • Nishinari K, Takemas M, Takahashi R, Zhang H (2007) Xyloglucans, galactomannans, glucomannans. In: Comprehensive glycoscience, pp 613–652

    Chapter  Google Scholar 

  • Paës G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30(3):564–592

    Article  PubMed  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2013) Optimization of microwave assisted alkaline extraction of xylan from birch wood using response surface methodology. J Mater Sci Chem Eng 01(06):38–50

    CAS  Google Scholar 

  • Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CMGA, Ferreira LM, Nagy T, Clark SJ, Davies GJ, Gilbert HJ (2004) The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J Biol Chem 279(10):9597–9605

    Article  CAS  PubMed  Google Scholar 

  • Petkowicz CL, Reicher F, Chanzy H, Taravel FR, Voung R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44:107–112

    Article  CAS  Google Scholar 

  • Pitkänen L, Tuomainen P, Virkki L, Tenkanen M (2011) Molecular characterization and solution properties of enzymatically tailored arabinoxylans. Int J Biol Macromol 49(5):963–969

    Article  PubMed  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  • Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8(9):300–306

    Article  Google Scholar 

  • Quintana E, Valls C, Vidal T, Roncero MB (2015) Comparative evaluation of the action of two different endoglucanases. Part II: on a biobleached acid sulphite pulp. Cellulose 22(3):2081–2093

    Article  CAS  Google Scholar 

  • Rohan M (2016) Industrial enzymes market worth 6.2 billion USD by 2020. https://www.prnewswire.com/news-releases/industrial-enzymes-market-worth-usd-62-billion-by-2020-525597471.html

  • Sabater C, Corzo N, Olano A, Montilla A (2018) Enzymatic extraction of pectin from artichoke Cynara scolymus L. by-products using Celluclast®1.5L. Carbohydr Polym 190:43–49

    Article  CAS  PubMed  Google Scholar 

  • Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17(3):512–531

    Article  CAS  PubMed  Google Scholar 

  • Santala O, Lehtinen P, Nordlund E, Suortti T, Poutanen K (2011) Impact of water content on the solubilisation of arabinoxylan during xylanase treatment of wheat bran. J Cereal Sci 54(2):187–194

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61(1):263–289

    Article  CAS  PubMed  Google Scholar 

  • Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crop Prod 27(2):189–195

    Article  CAS  Google Scholar 

  • Severini C, Azzollini D, Jouppila K, Jussi L, Derossi A, De Pilli T (2015) Effect of enzymatic and technological treatments on solubilisation of arabinoxylans from brewer’s spent grain. J Cereal Sci 65:162–166

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  CAS  PubMed  Google Scholar 

  • Sharada R, Venkateswarlu G, Venkateswar S, Anandrao M (2014) Applications of Cellulases – review. Int J Pharm Chem Biol Sci 4(2):424–437

    CAS  Google Scholar 

  • Sørensen HR, Pedersen S, Viksø-Nielsen A, Meyer AS (2005) Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzym Microb Technol 36(5–6):773–784

    Article  CAS  Google Scholar 

  • Sporck D, Reinoso FAM, Rencoret J, Gutiérrez A, del Rio JC, Ferraz A, Milagres AMF (2017) Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol Biofuels 10(1):296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spotti MJ, Campanella OH (2017) Functional modifications by physical treatments of dietary fibers used in food formulations. Curr Opin Food Sci 15:70–78

    Article  Google Scholar 

  • Sternberg D (1976) Beta-glucosidase of Trichoderma: its biosynthesis and role in saccharification of cellulose. Appl Environ Microbiol. 31(5):648–654

    Google Scholar 

  • Tan H, Chen W, Liu Q, Yang G, Li K (2018) Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress- and inflammation-activated signaling pathways. Front Immunol 9:1–13

    Article  CAS  Google Scholar 

  • Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM (1997) Dietary fibres: nutritional and technological interest. Trends Food Sci Technol 8(2):41–48

    Article  CAS  Google Scholar 

  • Tibolla H, Pelissari FM, Rodrigues MI, Menegalli FC (2017) Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind Crop Prod 95:664–674

    Article  CAS  Google Scholar 

  • Toushik SH, Lee KT, Lee JS, Kim KS (2017) Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries. J Food Sci 82(3):585–593

    Article  CAS  PubMed  Google Scholar 

  • Trogh I, Courtin CM, Andersson AAM, Åman P, Sørensen JF, Delcour JA (2004) The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and 1→3,1→4 -β-D-glucan levels. J Cereal Sci 40(3):257–267

    Article  CAS  Google Scholar 

  • Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR (2018) Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci Rep 8(1):1–13

    Article  CAS  Google Scholar 

  • van der Maarel MJE, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the a-amylase family. J Biotechnol 94(2):137–155

    Article  PubMed  Google Scholar 

  • Verbruggen MA, Spronk BA, Schols HA, Beldman G, Voragen AGJ, Thomas JR, Kamerling JP, Vliegenthart JFG (1998) Structures of enzymically derived oligosaccharides from sorghum glucuronoarabinoxylan. Carbohydr Res 306(1–2):265–274

    Article  CAS  PubMed  Google Scholar 

  • Viikari L, Suurnäkki A, Grönqvist S, Raaska L, Ragauskas A (2009) Forest products: biotechnology in pulp and paper processing. In: Encyclopedia of Microbiology, pp 80–94

    Chapter  Google Scholar 

  • Vioque J, Clemente A, Sáchez-Vioque R, Pedroche J, Millán F (2000) Effect of AlcalaseTMon olive pomace protein extraction. J Am Oil Chem Soc 77(2):181–185

    Article  CAS  Google Scholar 

  • Wang J, Sun B, Liu Y, Zhang H (2014) Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem 150:482–488

    Article  CAS  PubMed  Google Scholar 

  • Warren R (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol. 50:183–212.

    Google Scholar 

  • Wyman C, Decker S, Himmel M, Brady J, Skopec C, Viikari L (2004) Hydrolysis of cellulose and hemicellulose. In: Dumitriu S (ed) Polysaccharides: structural diversity and fucnctional versatility, vol 1. Marcel Dekker, pp 1023–1062

    Google Scholar 

  • Xing Y, Su Z, Wang K, Deng L, Jiang J (2014) Combination of low-pressure steam explosion and alkaline peroxide pretreatment for separation of hemicellulose. Bioresources 9(2):1–12

    Article  CAS  Google Scholar 

  • Yadav S, Yadav PK, Yadav D, Yadav KDS (2009) Pectin lyase: a review. Process Biochem 44(1):1–10

    Article  CAS  Google Scholar 

  • Yang YY, Ma S, Wang XX, and Zheng XL (2017) Modification and application of dietary fiber in foods. J Chem, 2017: ID 9340427

    Google Scholar 

  • Yu G, Bei J, Zhao J, Li Q, Cheng C (2018) Modification of carrot Daucus carota Linn. var. Sativa Hoffm. pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem 257(17):333–340

    Article  CAS  PubMed  Google Scholar 

  • Yuan TQ, Xu F, He J, Sun RC (2010) Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions. Biotechnol Adv 28(5):583–593

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sathitsuksanoh N, Barone JR, Renneckar S (2016) Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing GTP. Bioresour Technol 199:148–154

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo H. Campanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spotti, M.J., Campanella, O.H. (2020). Enzymatic Processes of Dietary Fibers. In: Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V. (eds) Science and Technology of Fibers in Food Systems. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-38654-2_13

Download citation

Publish with us

Policies and ethics