Skip to main content

Adipose Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1226))

Abstract

The term “adipose tissue” represents a multicellular and multifunctional organ involved in lipid storage, in hormone and temperature regulation, and in the protection of bones and vital organs from impact-based damage. Emerging evidence now suggests a more malignant role of adipose tissue in promoting cancer onset and progression via the release of secreted factors such as interleukin-6 (IL6) and extracellular vesicles (EVs). These adipose-source factors subsequently affect various aspects of tumorigenesis and/or cancer progression by either directly enhancing the tumor cell oncogenic phenotype or indirectly by the stimulating adjacent normal cells to adopt a more pro-cancer phenotype. Due to the recent growing interest in the role of IL6 and EVs released by adipose tissue in cancer promotion and progression, we are focusing on the protumorigenic impact of fat tissue via IL6 and EV secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231:R77–R99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850

    CAS  PubMed  Google Scholar 

  4. Jensen MD (2006) Adipose tissue as an endocrine organ: implications of its distribution on free fatty acid metabolism. Eur Hear J Suppl 8:B13–B19

    Article  CAS  Google Scholar 

  5. Heaton GM, Wagenvoord RJ, Kemp A, Nicholls DG (1978) Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82:515–521

    Article  CAS  PubMed  Google Scholar 

  6. Ricquier D, Kader JC (1976) Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73:577–583

    Article  CAS  PubMed  Google Scholar 

  7. Cypess AM et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Marken Lichtenbelt WD et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  9. Virtanen KA et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  10. Saely CH, Geiger K, Drexel H (2012) Brown versus white adipose tissue: a mini-review. Gerontology 58:15–23

    Article  PubMed  Google Scholar 

  11. Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fat Acids 73:9–15

    Article  CAS  Google Scholar 

  12. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  13. Bódis K, Roden M (2018) Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Investig 48:e13017

    Article  CAS  Google Scholar 

  14. Lakkis JI, Weir MR (2018) Obesity and kidney disease. Prog Cardiovasc Dis 61:157–167

    Article  PubMed  Google Scholar 

  15. Zielińska A et al (2019) The role of adipose tissue in the pathogenesis of Crohn’s disease. Pharmacol Rep 71:105–111

    Article  PubMed  CAS  Google Scholar 

  16. Riondino S et al (2014) Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J Gastroenterol 20:5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet (London England) 384:766–781

    Article  Google Scholar 

  18. Schneider H, Dietrich ES, Venetz WP (2010) Trends and stabilization up to 2022 in overweight and obesity in Switzerland, comparison to France, UK, US and Australia. Int J Environ Res Public Health 7:460–472

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  20. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34

    Article  CAS  PubMed  Google Scholar 

  21. Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28:629–636

    Article  CAS  PubMed  Google Scholar 

  22. Hutley L, Prins JB (2005) Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 330:280–289

    Article  PubMed  Google Scholar 

  23. Reeves GK et al (2007) Cancer incidence and mortality in relation to body mass index in the million women study: cohort study. BMJ 335:1134

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  25. Petrelli JM, Calle EE, Rodriguez C, Thun MJ (2002) Body mass index, height, and postmenopausal breast cancer mortality in a prospective cohort of US women. Cancer Causes Control 13:325–332

    Article  PubMed  Google Scholar 

  26. Adams TD, Hunt SC (2009) Cancer and obesity: effect of bariatric surgery. World J Surg 33:2028–2033

    Article  PubMed  Google Scholar 

  27. Arendt LM et al (2013) Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 73:6080–6093

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z et al (2011) High fat diet induces formation of spontaneous liposarcoma in mouse adipose tissue with overexpression of interleukin 22. PLoS One 6:e23737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sciacca L et al (2013) Clinical and molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutr Metab Cardiovasc Dis 23:808–815

    Article  CAS  PubMed  Google Scholar 

  30. Bougaret L et al (2017) Supernatants of adipocytes from obese versus normal weight women and breast cancer cells: in vitro impact on angiogenesis. J Cell Physiol 232:1808–1816

    Article  CAS  PubMed  Google Scholar 

  31. Divella R, De Luca R, Abbate I, Naglieri E, Daniele A (2016) Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer 7:2346–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scherer PE (2016) The multifaceted roles of adipose tissue—therapeutic targets for diabetes and beyond: the 2015 banting lecture. Diabetes 65:1452–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Durcin M et al (2017) Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 6:1305677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kranendonk MEG et al (2014) Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity 22:1296–1308

    Article  CAS  PubMed  Google Scholar 

  35. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  PubMed  CAS  Google Scholar 

  36. Lazar I et al (2016) Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res 76:4051–4057

    Article  CAS  PubMed  Google Scholar 

  37. Gernapudi R et al (2015) Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat 150:685–695

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383:13–20

    Article  CAS  PubMed  Google Scholar 

  39. Thomou T et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koeck ES et al (2014) Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res 192:268–275

    Article  CAS  PubMed  Google Scholar 

  41. Mohamed-Ali V et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82:4196–4200

    CAS  PubMed  Google Scholar 

  42. Carey AL et al (2004) Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 47:1029–1037

    CAS  PubMed  Google Scholar 

  43. Massa M et al (2016) Interaction between breast cancer cells and adipose tissue cells derived from fat grafting. Aesthet Surg J 36:358–363

    Article  PubMed  Google Scholar 

  44. Laurent V et al (2016) Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun 7:10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park EJ et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32:550–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Hall G et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010

    Article  PubMed  CAS  Google Scholar 

  48. Prystaz K et al (2018) Distinct effects of IL-6 classic and trans-signaling in bone fracture healing. Am J Pathol 188:474–490

    Article  CAS  PubMed  Google Scholar 

  49. Hobbs MV, McEvilly RJ, Koch RJ, Cardenas GJ, Noonan DJ (1991) Interleukin-6 production by murine B cells and B cell lines. Cell Immunol 132:442–450

    Article  CAS  PubMed  Google Scholar 

  50. Kitani A et al (1992) Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol 88:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang R et al (2016) IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21-producing B helper CD8+ T cells. J Exp Med 213:2281–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kudo O et al (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7

    Article  CAS  PubMed  Google Scholar 

  53. Hirano T et al (1990) Interleukin 6 and its receptor in the immune response and hematopoiesis. Int J Cell Cloning 8:155–167

    Article  CAS  PubMed  Google Scholar 

  54. Aparicio-Siegmund S, Deseke M, Lickert A, Garbers C (2017) Trans-signaling of interleukin-6 (IL-6) is mediated by the soluble IL-6 receptor, but not by soluble CD5. Biochem Biophys Res Commun 484:808–812

    Article  CAS  PubMed  Google Scholar 

  55. Schuett H et al (2012) Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32:281–290

    Article  CAS  PubMed  Google Scholar 

  56. Catar R et al (2017) IL-6 trans-signaling links inflammation with angiogenesis in the peritoneal membrane. J Am Soc Nephrol 28(4):1188–1199. https://doi.org/10.1681/ASN.2015101169

    Article  CAS  PubMed  Google Scholar 

  57. Lacroix M et al (2015) Novel insights into interleukin 6 (IL-6) cis- and trans-signaling pathways by differentially manipulating the assembly of the IL-6 signaling complex. J Biol Chem 290:26943–26953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei L-H et al (2013) The role of IL-6 trans-signaling in vascular leakage: implications for ovarian hyperstimulation syndrome in a murine model. J Clin Endocrinol Metab 98:E472–E484

    Article  CAS  PubMed  Google Scholar 

  59. Ebihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A (2011) Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Investig Ophthalmol Vis Sci 52:8549

    Article  CAS  Google Scholar 

  60. Howlett M, Menheniott TR, Judd LM, Giraud AS (2009) Cytokine signalling via gp130 in gastric cancer. Biochim Biophys Acta, Mol Cell Res 1793:1623–1633

    Article  CAS  PubMed  Google Scholar 

  61. Echevarria FD, Rickman AE, Sappington RM (2016) Interleukin-6: a constitutive modulator of glycoprotein 130, neuroinflammatory and cell survival signaling in retina. J Clin Cell Immunol 7:1–3

    Article  CAS  Google Scholar 

  62. Gerhartz C et al (1996) Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem 271:12991–12998

    Article  CAS  PubMed  Google Scholar 

  63. Bastard J-P et al (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85:3338–3342

    CAS  PubMed  Google Scholar 

  64. Calvo VP, Sacca PA, Tesone AJ, Vidal L, Calvo JC (2010) Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells. Mol Med Rep 3(433–9)

    Google Scholar 

  65. Amemori S et al (2007) Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol 292:G923–G929

    Article  CAS  PubMed  Google Scholar 

  66. Nieman KM et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee J et al (2017) Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One 12:e0174126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sheng X et al (2017) Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol Cancer Res 15:1704–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Behan JW et al (2009) Adipocytes impair leukemia treatment in mice. Cancer Res 69:7867–7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheng X et al (2016) Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget 7(73147–73159):73147

    PubMed  PubMed Central  Google Scholar 

  71. He J-Y et al (2018) Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of lysyl hydroxylase-2 expression. Cell Commun Signal 16:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fujisaki K et al (2015) Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 150:255–263

    Article  CAS  PubMed  Google Scholar 

  73. Wang F et al (2014) Mammary fat of breast cancer: gene expression profiling and functional characterization. PLoS One 9:e109742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gyamfi J, Lee Y-H, Eom M, Choi J (2018) Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep 8:8859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Weng Y-S et al (2019) MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 18:42

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang Y, Zhou BP (2011) Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 30:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fedele M, Cerchia L, Chiappetta G (2017) The epithelial-to-mesenchymal transition in breast cancer: focus on basal-like carcinomas. Cancers (Basel) 9:E134

    Article  CAS  Google Scholar 

  78. Wang Y, Zhou BP (2013) Epithelial-mesenchymal transition—A hallmark of breast cancer metastasis. Cancer Hallm 1:38–49

    Article  PubMed  PubMed Central  Google Scholar 

  79. Harkins JM et al (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. J Nutr 134:2673–2677

    Article  CAS  PubMed  Google Scholar 

  80. Kim HS et al (2018) IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res 37:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mayi TH et al (2012) Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem 287:21904–21913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Casadei L et al (2017) Exosome-derived miR-25-3p and miR-92a-3p stimulate liposarcoma progression. Cancer Res 77:3846–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hilvo M, Orešiè AM (2012) Regulation of lipid metabolism in breast cancer provides diagnostic and therapeutic opportunities. Clin Lipidol 7:177–188

    Article  CAS  Google Scholar 

  84. Pucer A et al (2013) Group X secreted phospholipase A(2) induces lipid droplet formation and prolongs breast cancer cell survival. Mol Cancer 12:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lettiero B, Inasu M, Kimbung S, Borgquist S (2018) Insensitivity to atorvastatin is associated with increased accumulation of intracellular lipid droplets and fatty acid metabolism in breast cancer cells. Sci Rep 8:5462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sun X et al (2014) IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene. https://doi.org/10.1038/onc.2014.158

  87. Bhat-Nakshatri P, Newton TR, Goulet R, Nakshatri H, Nakshatri H (1998) NF-kappaB activation and interleukin 6 production in fibroblasts by estrogen receptor-negative breast cancer cell-derived interleukin 1alpha. Proc Natl Acad Sci U S A 95:6971–6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chiu JJ, Sgagias MK, Cowan KH (1996) Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Cancer Res 2:215–221

    CAS  PubMed  Google Scholar 

  89. Strong AL et al (2017) Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype. Stem Cells Int 2017:1–11

    Article  CAS  Google Scholar 

  90. Maia J, Caja S, Moraes MCS, Couto N, Costa-Silva B (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wong DE et al (2019) Adipose-derived stem cell extracellular vesicles: a systematic review*. J Plast Reconstr Aesthetic Surg 72:1207–1218

    Article  Google Scholar 

  92. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11

    Article  CAS  PubMed  Google Scholar 

  93. Chalmin F et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to Interleukin-2. Cancer Res 67:7458–7466

    Article  CAS  PubMed  Google Scholar 

  95. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yáñez-Mó M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  97. Puhka M et al (2017) Metabolomic profiling of extracellular vesicles and alternative normalization methods reveal enriched metabolites and strategies to study prostate cancer-related changes. Theranostics 7:3824–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4

    Article  CAS  PubMed  Google Scholar 

  100. Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci 114:E9066–E9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  PubMed  CAS  Google Scholar 

  102. Thakur BK et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kogure A, Kosaka N, Ochiya T (2019) Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci 26:7

    Article  PubMed  PubMed Central  Google Scholar 

  104. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  105. Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maacha S et al (2019) Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 18:55

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641

    Article  CAS  Google Scholar 

  108. Zomer A et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. YANG L, WU X-H, WANG D, LUO C-L, CHEN L-X (2013) Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep 8:1272–1278

    Article  CAS  PubMed  Google Scholar 

  110. Pan L et al (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143:991–1004

    Article  CAS  PubMed  Google Scholar 

  111. Qu J-L et al (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 41:875–880

    Article  CAS  PubMed  Google Scholar 

  112. Matsumoto A et al (2017) Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci 108:1803–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Aga M et al (2014) Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33:4613–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ramteke A et al (2015) Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 54:554–565

    Article  CAS  PubMed  Google Scholar 

  115. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598

    Article  CAS  PubMed  Google Scholar 

  116. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lazar I, Clement E, Attane C, Muller C, Nieto L (2018) A new role for extracellular vesicles: how small vesicles can feed tumors’ big appetite. J Lipid Res 59:1793–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bochet L et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5668

    Article  CAS  PubMed  Google Scholar 

  119. Zhang X et al (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Guo W et al (2017) Exosomes: new players in cancer. Oncol Rep 38:665–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Antonyak MA et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci 108:4852–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci 106:3794–3799

    Article  PubMed  PubMed Central  Google Scholar 

  123. Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  CAS  PubMed  Google Scholar 

  124. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–9630

    Article  CAS  PubMed  Google Scholar 

  125. Webber JP et al (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34:290–302

    Article  CAS  PubMed  Google Scholar 

  126. Robado de Lope L, Alcíbar OL, Amor López A, Hergueta-Redondo M, Peinado H (2018) Tumour–adipose tissue crosstalk: fuelling tumour metastasis by extracellular vesicles. Philos Trans R Soc B Biol Sci 373:20160485

    Article  CAS  Google Scholar 

  127. Wu L et al (2016) Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumor Biol 37:12169–12180

    Article  CAS  Google Scholar 

  128. Chow A et al (2015) Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-κB. Sci Rep 4:5750

    Article  CAS  Google Scholar 

  129. Fabbri M et al (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci 109:E2110–E2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baglio SR et al (2017) Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res 23:3721–3733

    Article  CAS  PubMed  Google Scholar 

  131. Sagar G et al (2016) Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 65:1165–1174

    Article  CAS  PubMed  Google Scholar 

  132. Hu W et al (2019) Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 1864:1091–1102

    Article  CAS  PubMed  Google Scholar 

  133. Wang S et al (2018) Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol 11:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Song YH et al (2017) Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells. Matrix Biol 60–61:190–205

    Article  PubMed  CAS  Google Scholar 

  135. Smyth LA et al (2013) CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol 43:2430–2440

    Article  CAS  PubMed  Google Scholar 

  136. Okoye IS et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang M et al (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zheng P et al (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Boelens MC et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556

    Article  CAS  PubMed  Google Scholar 

  141. Shimoda M et al (2014) Loss of the timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 16:889–901

    Article  CAS  PubMed  Google Scholar 

  142. Roccaro AM et al (2013) BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gu L, Findley HW, Zhou M (2002) MDM2 induces NF-κB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 99:3367

    Article  CAS  PubMed  Google Scholar 

  144. Suzuki A et al (1998) Role of MDM2 overexpression in doxorubicin resistance of breast carcinoma. Jpn J Cancer Res 89:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Anderson JL et al (2014) Phosphoproteomic profiling reveals IL6-mediated paracrine signaling within the Ewing sarcoma family of tumors. Mol Cancer Res 12:1740–1754

    Article  CAS  PubMed  Google Scholar 

  146. Huang R et al (2014) Increased STAT1 signaling in endocrine-resistant breast cancer. PLoS One 9:e94226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zhang K et al (2018) The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. J Cell Mol Med 22:3679. https://doi.org/10.1111/jcmm.13651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kong E et al (2015) STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior. Sci Rep 5:9009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Huang S et al (2018) Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Cancer Sci 109:678–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Teipel R et al (2015) Siltuximab for multicentric Castleman disease—letter. Clin Cancer Res 21:4740

    Article  PubMed  Google Scholar 

  151. van Rhee F et al (2014) Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol 15:966–974

    Article  PubMed  CAS  Google Scholar 

  152. Yokota S et al (2008) Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371:998–1006

    Article  CAS  PubMed  Google Scholar 

  153. Yokota S et al (2016) Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Ann Rheum Dis 75:1654–1660

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Casadei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zewdu, A., Casadei, L., Pollock, R.E., Braggio, D. (2020). Adipose Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_6

Download citation

Publish with us

Policies and ethics