Skip to main content

The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1226))

Abstract

It has been appreciated that the cross talk between bone metastatic cancer cells and bone marrow microenvironment influence one another to worsen bone metastatic disease progression. Bone marrow contains various cell types, including (1) cells of mesenchymal origin (e.g., osteoblasts, osteocytes, and adipocytes), (2) cells of hematopoietic origin (e.g., osteoclast and immune cells), and (3) others (e.g., endothelial cells and nerves). The recent studies have enabled us to discover many important cancer-derived factors responsible for the development of bone metastasis. However, many critical questions regarding the roles of bone microenvironment in bone metastatic progression remain elusive. To answer these questions, a deeper understanding of the cross talk between bone metastatic cancer and bone marrow microenvironment is clearly warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  3. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, Chen EI, Lyden D, Bissell MJ (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sleeman JP (2012) The metastatic niche and stromal progression. Cancer Metastasis Rev 31:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  CAS  PubMed  Google Scholar 

  7. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  PubMed  Google Scholar 

  9. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, Morrison SJ (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  12. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  CAS  PubMed  Google Scholar 

  14. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    Article  CAS  PubMed  Google Scholar 

  15. Sims NA, Walsh NC (2012) Intercellular cross-talk among bone cells: new factors and pathways. Curr Osteoporos Rep 10:109–117

    Article  PubMed  Google Scholar 

  16. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cook LM, Shay G, Araujo A, Lynch CC (2014) Integrating new discoveries into the "vicious cycle" paradigm of prostate to bone metastases. Cancer Metastasis Rev 33:511–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guise TA (2002) The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2:570–572

    CAS  PubMed  Google Scholar 

  19. Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  20. Shiozawa Y, Taichman RS (2012) Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp Hematol 40:685–694

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang N, Docherty FE, Brown HK, Reeves KJ, Fowles AC, Ottewell PD, Dear TN, Holen I, Croucher PI, Eaton CL (2014) Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res 29:2688–2696

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H, Zhao Z, Du S, Tao J, Lee B, Westbrook TF, Wong ST, Jin X, Rosen JM, Osborne CK, Zhang XH (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, Kim SM, Ortiz A, Wu FL, Logothetis CJ, Yu-Lee LY, Lin SH (2010) Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res 70:4580–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tamura D, Hiraga T, Myoui A, Yoshikawa H, Yoneda T (2008) Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol 33:17–24

    CAS  PubMed  Google Scholar 

  25. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang J, Lu G, Roodman GD, Loberg RD, Pienta KJ, Taichman RS (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ, Taichman RS (2010) GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yumoto K, Eber MR, Wang J, Cackowski FC, Decker AM, Lee E, Nobre AR, Aguirre-Ghiso JA, Jung Y, Taichman RS (2016) Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6:36520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiozawa Y, Berry JE, Eber MR, Jung Y, Yumoto K, Cackowski FC, Yoon HJ, Parsana P, Mehra R, Wang J, Mcgee S, Lee E, Nagrath S, Pienta KJ, Taichman RS (2016) The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget 7:41217–41232

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng H, Bae Y, Kasimir-Bauer S, Tang R, Chen J, Ren G, Yuan M, Esposito M, Li W, Wei Y, Shen M, Zhang L, Tupitsyn N, Pantel K, King C, Sun J, Moriguchi J, Jun HT, Coxon A, Lee B, Kang Y (2017) Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32:731–747. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK, Gang M, Su X, Zamani A, Shi Y, Lavine KJ, Ornitz DM, Weilbaecher KN, Long F, Novack DV, Faccio R, Longmore GD, Stewart SA (2016) Stromal-initiated changes in the bone promote metastatic Niche development. Cell Rep 14:82–92

    Article  CAS  PubMed  Google Scholar 

  32. Lawson MA, Mcdonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, Neil Dear T, Van Valckenborgh E, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, Quinn JM, Zannettino AC, Phan TG, Croucher PI (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983

    Article  CAS  PubMed  Google Scholar 

  33. Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116:281–290

    Article  CAS  PubMed  Google Scholar 

  34. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Wang L, Zhao K, Wang H (2018b) Osteocytogenesis: roles of physicochemical factors, collagen cleavage, and exogenous molecules. Tissue Eng Part B Rev 24:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L, Neri A, Ceccarelli F, Palumbo C (2012) Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia 26:1391–1401

    Article  CAS  PubMed  Google Scholar 

  37. Cui YX, Evans BA, Jiang WG (2016) New roles of osteocytes in proliferation, migration and invasion of breast and prostate cancer cells. Anticancer Res 36:1193–1201

    CAS  PubMed  Google Scholar 

  38. Chen A, Wang L, Liu S, Wang Y, Liu Y, Wang M, Nakshatri H, Li BY, Yokota H (2018a) Attraction and compaction of migratory breast cancer cells by bone matrix proteins through tumor-osteocyte interactions. Sci Rep 8:5420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu S, Fan Y, Chen A, Jalali A, Minami K, Ogawa K, Nakshatri H, Li BY, Yokota H (2018) Osteocyte-driven downregulation of snail restrains effects of Drd2 inhibitors on mammary tumor cells. Cancer Res 78:3865–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, Tricoli L, Albanese C, Lee W, Zilberberg J (2018) Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. Sci Rep 8:17975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou JZ, Riquelme MA, Gu S, Kar R, Gao X, Sun L, Jiang JX (2016) Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis. Oncogene 35:5597–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX (2015) Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 34:1831–1842

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET (2019) Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 38:4540–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang W, Sarazin BA, Kornilowicz G, Lynch ME (2018) Mechanically-loaded breast cancer cells modify osteocyte mechanosensitivity by secreting factors that increase osteocyte dendrite formation and downstream resorption. Front Endocrinol (Lausanne) 9:352

    Article  Google Scholar 

  45. Ma YV, Lam C, Dalmia S, Gao P, Young J, Middleton K, Liu C, Xu H, You L (2018a) Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte signaling. J Cell Biochem 119:5665–5675

    Article  CAS  PubMed  Google Scholar 

  46. Ma YV, Xu L, Mei X, Middleton K, You L (2018b) Mechanically stimulated osteocytes reduce the bone-metastatic potential of breast cancer cells in vitro by signaling through endothelial cells. J Cell Biochem. https://doi.org/10.1002/jcb.28034

    Article  CAS  Google Scholar 

  47. Mei X, Middleton K, Shim D, Wan Q, Xu L, Ma YV, Devadas D, Walji N, Wang L, Young EWK, You L (2019) Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integr Biol (Camb) 11(4):119–129

    Article  Google Scholar 

  48. Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET (2015) Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res 75:2151–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Toscani D, Palumbo C, Dalla Palma B, Ferretti M, Bolzoni M, Marchica V, Sena P, Martella E, Mancini C, Ferri V, Costa F, Accardi F, Craviotto L, Aversa F, Giuliani N (2016) The proteasome inhibitor bortezomib maintains osteocyte viability in multiple myeloma patients by reducing both apoptosis and autophagy: a new function for proteasome inhibitors. J Bone Miner Res 31:815–827

    Article  CAS  PubMed  Google Scholar 

  50. Qiao H, Cui Z, Yang S, Ji D, Wang Y, Yang Y, Han X, Fan Q, Qin A, Wang T, He XP, Bu W, Tang T (2017) Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive Plumbagin release. ACS Nano 11:7259–7273

    Article  CAS  PubMed  Google Scholar 

  51. Fazeli PK, Horowitz MC, Macdougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A (2013) Marrow fat and bone--new perspectives. J Clin Endocrinol Metab 98:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Falank C, Fairfield H, Reagan MR (2016) Signaling interplay between bone marrow adipose tissue and multiple myeloma cells. Front Endocrinol (Lausanne) 7:67

    Article  Google Scholar 

  53. Falank C, Fairfield H, Reagan MR (2017) Reflections on cancer in the bone marrow: adverse roles of adipocytes. Curr Mol Biol Rep 3:254–262

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I (2014) Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 33:527–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo G, He Y, Yu X (2018) Bone marrow adipocyte: an intimate partner with tumor cells in bone metastasis. Front Endocrinol (Lausanne) 9:339

    Article  Google Scholar 

  56. Masarwi M, Deschiffart A, Ham J, Reagan MR (2019) Multiple myeloma and fatty acid metabolism. JBMR Plus 3:e10173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. McDonald MM, Fairfield H, Falank C, Reagan MR (2017) Adipose, bone, and myeloma: contributions from the microenvironment. Calcif Tissue Int 100:433–448

    Article  CAS  PubMed  Google Scholar 

  58. Morris EV, Edwards CM (2016) The role of bone marrow adipocytes in bone metastasis. J Bone Oncol 5:121–123

    Article  PubMed  PubMed Central  Google Scholar 

  59. Soley L, Falank C, Reagan MR (2017) MicroRNA transfer between bone marrow adipose and multiple myeloma cells. Curr Osteoporos Rep 15:162–170

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tabe Y, Konopleva M, Munsell MF, Marini FC, Zompetta C, McQueen T, Tsao T, Zhao S, Pierce S, Igari J, Estey EH, Andreeff M (2004) PML-RARalpha is associated with leptin-receptor induction: the role of mesenchymal stem cell-derived adipocytes in APL cell survival. Blood 103:1815–1822

    Article  CAS  PubMed  Google Scholar 

  61. Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N, Ikeo K, Mogushi K, Shikami M, Ruvolo V, Ishizawa J, Hail N Jr, Kazuno S, Igarashi M, Matsushita H, Yamanaka Y, Arai H, Nagaoka I, Miida T, Hayashizaki Y, Konopleva M, Andreeff M (2017) Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res 77:1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR, Piddock RE, Fenech M, Zaitseva L, Abdul-Aziz A, Turner J, Watkins JA, Lawes M, Bowles KM, Rushworth SA (2017) Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129:1320–1332

    Article  CAS  PubMed  Google Scholar 

  63. Battula VL, Chen Y, Cabreira MDAG, Ruvolo V, Wang Z, Ma W, Konoplev S, Shpall E, Lyons K, Strunk D, Bueso-Ramos C, Davis RE, Konopleva M, Andreeff M (2013) Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood 122:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trotter TN, Gibson JT, Sherpa TL, Gowda PS, Peker D, Yang Y (2016) Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone. Am J Pathol 186:3054–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Templeton ZS, Lie WR, Wang W, Rosenberg-Hasson Y, Alluri RV, Tamaresis JS, Bachmann MH, Lee K, Maloney WJ, Contag CH, King BL (2015) Breast cancer cell colonization of the human bone marrow adipose tissue Niche. Neoplasia 17:849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown MD, Hart C, Gazi E, Gardner P, Lockyer N, Clarke N (2010) Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer 102:403–413

    Article  CAS  PubMed  Google Scholar 

  67. Brown MD, Hart CA, Gazi E, Bagley S, Clarke NW (2006) Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br J Cancer 94:842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diedrich JD, Rajagurubandara E, Herroon MK, Mahapatra G, Huttemann M, Podgorski I (2016) Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget 7:64854–64877

    Article  PubMed  PubMed Central  Google Scholar 

  69. Herroon MK, Rajagurubandara E, Diedrich JD, Heath EI, Podgorski I (2018) Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Sci Rep 8:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, Podgorski I (2013) Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 4:2108–2123

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I (2015) Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis 32:353–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen GL, Luo Y, Eriksson D, Meng X, Qian C, Bauerle T, Chen XX, Schett G, Bozec A (2016) High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget 7:26653–26669

    PubMed  PubMed Central  Google Scholar 

  73. Wang J, Chen GL, Cao S, Zhao MC, Liu YQ, Chen XX, Qian C (2017) Adipogenic niches for melanoma cell colonization and growth in bone marrow. Lab Investig 97:737–745

    Article  CAS  PubMed  Google Scholar 

  74. Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E, De Bruyne E, Defresne MP, Van Riet I, Van Camp B, Vanderkerken K (2007) Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 21:1580–1584

    Article  CAS  PubMed  Google Scholar 

  75. Maurizi A, Rucci N (2018) The osteoclast in bone metastasis: player and target. Cancers (Basel) 10

    Google Scholar 

  76. Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556

    Article  CAS  PubMed  Google Scholar 

  77. Feng J, XU X, Li B, Brown E, Farris AB, Sun SY, Yang JJ (2014) Prostate cancer metastatic to bone has higher expression of the calcium-sensing receptor (CaSR) than primary prostate cancer. Receptors Clin Investig 1

    Google Scholar 

  78. Joeckel E, Haber T, Prawitt D, Junker K, Hampel C, Thuroff JW, Roos FC, Brenner W (2014) High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer 13:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim W, Takyar FM, Swan K, Jeong J, Vanhouten J, Sullivan C, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J (2016) Calcium-sensing receptor promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Cancer Res 76:5348–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liao J, Schneider A, Datta NS, McCauley LK (2006) Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res 66:9065–9073

    Article  CAS  PubMed  Google Scholar 

  81. Huang S, Tang Y, Peng X, Cai X, Wa Q, Ren D, Li Q, Luo J, Li L, Zou X, Huang S (2016) Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncol Rep 36:2025–2032

    Article  CAS  PubMed  Google Scholar 

  82. Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET, Zou W (2012) Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology 1:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Monteiro AC, Leal AC, Goncalves-Silva T, Mercadante AC, Kestelman F, Chaves SB, Azevedo RB, Monteiro JP, Bonomo A (2013) T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One 8:e68171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sawant A, Hensel JA, Chanda D, Harris BA, Siegal GP, Maheshwari A, Ponnazhagan S (2012) Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells. J Immunol 189:4258–4265

    Article  CAS  PubMed  Google Scholar 

  85. Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, Yang X (2012) Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS One 7:e48871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, Ponnazhagan S (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73:672–682

    Article  CAS  PubMed  Google Scholar 

  87. Wu AC, He Y, Broomfield A, Paatan NJ, Harrington BS, Tseng HW, Beaven EA, Kiernan DM, Swindle P, Clubb AB, Levesque JP, Winkler IG, Ling MT, Srinivasan B, Hooper JD, Pettit AR (2016) CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer. J Pathol 239:218–230

    Article  CAS  PubMed  Google Scholar 

  88. Soki FN, Cho SW, Kim YW, Jones JD, Park SI, Koh AJ, Entezami P, Daignault-Newton S, Pienta KJ, Roca H, McCauley LK (2015) Bone marrow macrophages support prostate cancer growth in bone. Oncotarget 6:35782–35796

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fend, L., Accart, N., Kintz, J., Cochin, S., Reymann, C., Le Pogam, F., Marchand, J. B., Menguy, T., Slos, P., Rooke, R., Fournel, S., Bonnefoy, J. Y., Preville, X. & Haegel, H. 2013. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts. PLoS One, 8, e73310

    Google Scholar 

  90. Jones JD, Sinder BP, Paige D, Soki FN, Koh AJ, Thiele S, Shiozawa Y, Hofbauer LC, Daignault S, Roca H, McCauley LK (2019) Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis. Neoplasia 21:172–184

    Article  CAS  PubMed  Google Scholar 

  91. Carlson P, Dasgupta A, Grzelak CA, Kim J, Barrett A, Coleman IM, Shor RE, Goddard ET, Dai J, Schweitzer EM, Lim AR, Crist SB, Cheresh DA, Nelson PS, Hansen KC, Ghajar CM (2019) Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 21:238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bauerle T, Hilbig H, Bartling S, Kiessling F, Kersten A, Schmitt-Graff A, Kauczor HU, Delorme S, Berger MR (2008) Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia 10:511–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Boilly B, Faulkner S, Jobling P, Hondermarck H (2017) Nerve dependence: from regeneration to cancer. Cancer Cell 31:342–354

    Article  CAS  PubMed  Google Scholar 

  94. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361

    Article  PubMed  Google Scholar 

  95. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, Jiang Z, Tanaka T, Dubeykovskaya ZA, Kim W, Chen X, Urbanska AM, Nagar K, Westphalen CB, Quante M, Lin CS, Gershon MD, Hara A, Zhao CM, Chen D, Worthley DL, Koike K, Wang TC (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31:21–34

    Article  CAS  PubMed  Google Scholar 

  96. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, Rhim AD, Davis BM (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 113:3078–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6:250ra115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mulcrone PL, Campbell JP, Clement-Demange L, Anbinder AL, Merkel AR, Brekken RA, Sterling JA, Elefteriou F (2017) Skeletal colonization by breast cancer cells is stimulated by an osteoblast and beta2AR-dependent neo-angiogenic switch. J Bone Miner Res 32:1442–1454

    Article  CAS  PubMed  Google Scholar 

  100. Clement-Demange L, Mulcrone PL, Tabarestani TQ, Sterling JA, Elefteriou F (2018) beta2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1beta and selectin-dependent manner. J Bone Oncol 13:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  101. Decker AM, Jung Y, Cackowski FC, Yumoto K, Wang J, Taichman RS (2017) Sympathetic signaling reactivates quiescent disseminated prostate cancer cells in the bone marrow. Mol Cancer Res 15:1644–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, De Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139

    Article  CAS  PubMed  Google Scholar 

  104. Parker C, Nilsson S, Heinrich D, Helle SI, O’sullivan JM, Fossa SD, Chodacki A, Wiechno P, Logue J, Seke M, Widmark A, Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall’oglio M, Franzen L, Coleman R, Vogelzang NJ, O’bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland OS, Sartor O, Investigators A (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is directly supported by Department of Defense (W81XWH-14-1-0403; W81XWH-17-1-0541; and W81XWH-19-1-0045) and the Wake Forest Baptist Comprehensive Cancer Center Internal Pilot Funding. This work is also supported by the National Cancer Institute’s Cancer Center Support Grant award number P30CA012197 issued to the Wake Forest Baptist Comprehensive Cancer Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute.

Conflict of Interests: The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Shiozawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiozawa, Y. (2020). The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_5

Download citation

Publish with us

Policies and ethics