Skip to main content
Log in

Reflections on Cancer in the Bone Marrow: Adverse Roles of Adipocytes

  • Molecular Biology of Bone Metastasis (H Taipaleenmäki, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This review highlights the recent advances in our understanding of adipocyte contributions to carcinogenesis or cancer disease progression for cancers in the bone.

Purpose of Review

In this review, we aim to describe bone marrow adipose tissue and discuss the soluble adipocyte-derived cytokines (adipokines) or endocrine factors, adipocyte-derived lipids, and the actual or putative juxtacrine signaling between bone marrow adipocytes and tumor cells in the bone marrow. This relationship likely affects tumor cell initiation, proliferation, metastasis, and/or drug resistance.

Recent Findings

Bone marrow adipose may affect tumor proliferation, drug resistance, or cancer-induced bone disease and hence may be a new target in the fight against cancer.

Summary

Overall, evidence is mixed regarding the role of bone marrow adipose and adipocytes in cancer progression, and more research in this arena is necessary to determine how these bone marrow microenvironmental cells contribute to malignancies in the marrow to identify novel, potentially targetable pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beason TS, Chang S-H, Sanfilippo KM, Luo S, Colditz GA, Vij R, et al. Influence of body mass index on survival in veterans with multiple myeloma. Oncologist. 2013;18:1074–9. https://doi.org/10.1634/theoncologist.2013-0015.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Teras LR, Kitahara CM, Birmann BM, Hartge PA, Wang SS, Robien K, et al. Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies. Br J Haematol. 2014;166:667–76. https://doi.org/10.1111/bjh.12935.

    Article  PubMed  PubMed Central  Google Scholar 

  3. • Veld J, O’Donnell EK, Reagan MR, Yee AJ, Torriani M, Rosen CJ, et al. Abdominal adipose tissue in MGUS and multiple myeloma. Skelet Radiol. 2016;45:1277–83. https://doi.org/10.1007/s00256-016-2425-4. This important research was the first to demonstrate a connection between abdominal adiposity and progression from MGUS to MM.

    Article  Google Scholar 

  4. Behan JW, Yun JP, Proektor MP, Ehsanipour EA, Arutyunyan A, Moses AS, et al. Adipocytes impair leukemia treatment in mice. Cancer Res. 2009;69:7867–74. https://doi.org/10.1158/0008-5472.CAN-09-0800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 2013;4:2108–23. 10.18632/oncotarget.1482.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Devlin MJ, Rosen CJ. The bone-fat interface: basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 2015;3:141–7. https://doi.org/10.1016/S2213-8587(14)70007-5.

    Article  PubMed  CAS  Google Scholar 

  7. Hudak CS, Gulyaeva O, Wang Y, Park S-M, Lee L, Kang C, et al. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 2014;8:678–87. https://doi.org/10.1016/j.celrep.2014.06.060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Devlin MJ. Why does starvation make bones fat? Am J Hum Biol. 2011;23:577–85. https://doi.org/10.1002/ajhb.21202.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krishnamoorthy D, Frechette DM, Adler BJ, Green DE, Chan ME, Rubin CT. Marrow adipogenesis and bone loss that parallels estrogen deficiency is slowed by low-intensity mechanical signals. Osteoporos Int. 2015; https://doi.org/10.1007/s00198-015-3289-5.

  10. Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46. https://doi.org/10.1016/j.bone.2014.03.044.

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Araújo IM, Salmon CEG, Nahas AK, Nogueira-Barbosa MH, Elias J, de Paula FJA. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur J Endocrinol. 2017;176:21–30. https://doi.org/10.1530/EJE-16-0448.

    Article  PubMed  CAS  Google Scholar 

  12. Singh L, Brennan TA, Russell E, Kim J-H, Chen Q, Brad Johnson F, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone. 2016;85:29–36. https://doi.org/10.1016/j.bone.2016.01.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2:165–71.

    Article  PubMed  CAS  Google Scholar 

  14. Kretlow JD, Jin Y-Q, Liu W, Zhang WJ, Hong T-H, Zhou G, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 2008;9:60. https://doi.org/10.1186/1471-2121-9-60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle. 2010;9:3648–54. https://doi.org/10.4161/cc.9.18.13046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. •• Fowler JA, Lwin ST, Drake MT, Edwards JR, Kyle RA, Mundy GR, et al. Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood. 2011;118:5872–82. https://doi.org/10.1182/blood-2011-01-330407. This groundbreaking finding was the first to show that adiponectin has anti-myeloma properties.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Falank C, Fairfield H, Reagan MR. Signaling interplay between bone marrow adipose tissue and multiple myeloma cells. Front Endocrinol (Lausanne). 2016;7:67. https://doi.org/10.3389/fendo.2016.00067.

    Article  Google Scholar 

  18. McDonald MM, Fairfield H, Falank C, Reagan MR. Adipose, bone, and myeloma: contributions from the microenvironment. Calcif Tissue Int. 2016; https://doi.org/10.1007/s00223-016-0162-2.

  19. Soley L, Falank C, Reagan MR. MicroRNA transfer between bone marrow adipose and multiple myeloma cells. Curr Osteoporos Rep. 2017;15:162–70. https://doi.org/10.1007/s11914-017-0360-5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trotter TN, Gibson JT, Sherpa TL, Gowda PS, Peker D, Yang Y. Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone. Am J Pathol. 2016;186:3054–63. https://doi.org/10.1016/j.ajpath.2016.07.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu Z, Xu J, He J, Liu H, Lin P, Wan X, et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget. 2015;6:34329–41. 10.18632/oncotarget.6020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E, De Bruyne E, et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia. 2007;21:1580–4. https://doi.org/10.1038/sj.leu.2404658. This seminal piece of research first drew attention to the potential for bone marrow adipose tissue to contribute to myeloma.

    Article  PubMed  CAS  Google Scholar 

  23. • Yu W, Cao D-D, Li Q, Mei H, Hu Y, Guo T. Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy. Oncotarget. 2016;7:86075–86. 10.18632/oncotarget.13342. This important manuscript demonstrates that leptin, derived from adipocytes, has tumor survival effects on myeloma cells.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503. https://doi.org/10.1038/nm.2492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Medina EA, Oberheu K, Polusani SR, Ortega V, Velagaleti GVN, Oyajobi BO. PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells. Leukemia. 2014;28:2080–9. https://doi.org/10.1038/leu.2014.112.

    Article  PubMed  CAS  Google Scholar 

  26. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431–5. https://doi.org/10.1038/nature22794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brown MD, Hart C, Gazi E, Gardner P, Lockyer N, Clarke N. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer. 2010;102:403–13. https://doi.org/10.1038/sj.bjc.6605481.

    Article  PubMed  CAS  Google Scholar 

  28. Templeton ZS, Lie W-R, Wang W, Rosenberg-Hasson Y, Alluri RV, Tamaresis JS, et al. Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia. 2015;17:849–61. https://doi.org/10.1016/j.neo.2015.11.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. •• Lwin ST, Olechnowicz SWZ, Fowler JA, Edwards CM. Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia. 2015;29:507–10. https://doi.org/10.1038/leu.2014.295. This important manuscript demonstrates that obesity can induce greater myeloma survival and proliferation in the bone marrow and that this may be via increased IGF-1.

    Article  PubMed  CAS  Google Scholar 

  30. Sulston RJ, Learman BS, Zhang B, Scheller EL, Parlee SD, Simon BR, et al. Increased circulating adiponectin in response to Thiazolidinediones: investigating the role of bone marrow adipose tissue. Front Endocrinol (Lausanne). 2016;7:128. https://doi.org/10.3389/fendo.2016.00128.

    Article  Google Scholar 

  31. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80. https://doi.org/10.1016/j.cell.2010.02.027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Messier TL, Boyd JR, Gordon JAR, Stein JL, Lian JB, Stein GS. Oncofetal epigenetic bivalency in breast cancer cells: H3K4 and H3K27 tri-methylation as a biomarker for phenotypic plasticity. J Cell Physiol. 2016;231:2474–81. https://doi.org/10.1002/jcp.25359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zych J, Stimamiglio MA, Senegaglia AC, Brofman PRS, Dallagiovanna B, Goldenberg S, et al. The epigenetic modifiers 5-aza-2′-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells. Braz J Med Biol Res. 2013;46:405–16. https://doi.org/10.1590/1414-431X20132893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Meyer MB, Benkusky NA, Sen B, Rubin J, Pike JW. Epigenetic plasticity drives Adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J Biol Chem. 2016;291(34):17829–47. https://doi.org/10.1074/jbc.M116.736538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fani N, Ziadlou R, Shahhoseini M, Baghaban EM. Comparative epigenetic influence of autologous versus fetal bovine serum on mesenchymal stem cells through in vitro osteogenic and adipogenic differentiation. Exp Cell Res. 2016;344:176–82. https://doi.org/10.1016/j.yexcr.2015.10.009.

    Article  PubMed  CAS  Google Scholar 

  36. Li G, Yao W, Jiang H. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr. 2014;144:1887–95. https://doi.org/10.3945/jn.114.198531.

    Article  PubMed  CAS  Google Scholar 

  37. Rumberger JM, Arch JRS, Green A. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ. 2014;2:e611. https://doi.org/10.7717/peerj.611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bricambert J, Favre D, Brajkovic S, Bonnefond A, Boutry R, Salvi R, et al. Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Mol Metab. 2016;5:1200–7. https://doi.org/10.1016/j.molmet.2016.09.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ali D, Alshammari H, Vishnubalaji R, Chalisserry EP, Hamam R, Alfayez M, et al. CUDC-907 promotes bone marrow Adipocytic differentiation through inhibition of histone deacetylase and regulation of cell cycle. Stem Cells Dev. 2017;26:353–62. https://doi.org/10.1089/scd.2016.0183.

    Article  PubMed  CAS  Google Scholar 

  40. Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N, Ikeo K, et al. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute Monocytic leukemia cells. Cancer Res. 2017;77:1453–64. https://doi.org/10.1158/0008-5472.CAN-16-1645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 2017;129:1320–32. https://doi.org/10.1182/blood-2016-08-734798.

    Article  PubMed  CAS  Google Scholar 

  42. Reagan MR, Mishima Y, Glavey SV, Zhang YY, Manier S, Lu ZN, et al. Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood. 2014;124:3250–9. https://doi.org/10.1182/blood-2014-02-558007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Glavey SV, Naba A, Manier S, Clauser K, Tahri S, Park J, et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia. 2017; https://doi.org/10.1038/leu.2017.102.

  44. Bar-Natan M, Stroopinsky D, Luptakova K, Coll MD, Apel A, Rajabi H, et al. Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein MUC1. Br J Haematol. 2017;176:929–38. https://doi.org/10.1111/bjh.14493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fan Y, Bi R, Densmore MJ, Sato T, Kobayashi T, Yuan Q, et al. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J. 2015; https://doi.org/10.1096/fj.15-278184.

  46. Takeshita S, Fumoto T, Naoe Y, Ikeda K. Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem. 2014;289:16699–710. https://doi.org/10.1074/jbc.M114.547919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fan Y, Hanai J, Le PT, Bi R, Maridas D, DeMambro V, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017;25:661–72. https://doi.org/10.1016/j.cmet.2017.01.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19:891–903. https://doi.org/10.1038/ncb3570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lawson MA, McDonald MM, Kovacic NN, Khoo WH, Terry RTL, Down J, et al. Osteoclasts control re-activation of dormant myeloma cells by remodeling the endosteal niche. Nat Commun. 2015;6:8983. https://doi.org/10.1038/ncomms9983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76:1089–100. https://doi.org/10.1158/0008-5472.CAN-15-1703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, et al. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia. 2012;26:1391–401. https://doi.org/10.1038/leu.2011.381.

    Article  PubMed  CAS  Google Scholar 

  52. Trotter TN, Fok M, Gibson JT, Peker D, Javed A, Yang Y. Osteocyte apoptosis attracts Myeloma cells to bone and supports progression through regulation of the bone marrow microenvironment. ASH Annu. Meet. Abstr., San Diego, CA: ASH Oral Presentation #484. 2016, p. Session: 651. Myeloma: Biology and Pathophysiology.

  53. McDonald MM, Reagan MR, Youlten SE, Mohanty ST, Seckinger A, Terry RL, et al. Inhibiting the osteocyte specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood. 2017; https://doi.org/10.1182/blood-2017-03-773341.

  54. Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol. 2017; https://doi.org/10.1002/jcp.25976.

  55. Scheller EL, Rosen CJ. What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci. 2014;1311:14–30. https://doi.org/10.1111/nyas.12327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Suchacki KJ, Cawthorn WP, Rosen CJ. Bone marrow adipose tissue: formation, function and regulation. Curr Opin Pharmacol. 2016;28:50–6. https://doi.org/10.1016/j.coph.2016.03.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fairfield H, Rosen CJ, Reagan MR. Connecting bone and fat: the potential role for sclerostin. Curr Mol Biol Reports. 2017;3:114–21. https://doi.org/10.1007/s40610-017-0057-7.

    Article  Google Scholar 

  58. Balani DH, Ono N, Kronenberg HM. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Invest. 2017; https://doi.org/10.1172/JCI91699.

  59. Philbrick KA, Wong CP, Branscum AJ, Turner RT, Iwaniec UT. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol. 2017;232:461–74. https://doi.org/10.1530/JOE-16-0484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xu J-C, Wu G-H, Zhou L-L, Yang X-J, Liu J-T. Leptin improves osteoblast differentiation of human bone marrow stroma stem cells. Eur Rev Med Pharmacol Sci. 2016;20:3507–13.

    PubMed  Google Scholar 

  61. Botolin S, McCabe LR. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209:967–76. https://doi.org/10.1002/jcp.20804.

    Article  PubMed  CAS  Google Scholar 

  62. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460:259–63. https://doi.org/10.1038/nature08099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kawano Y, Roccaro A, Azzi J, Ghobrial I. Multiple myeloma and the immune microenvironment. Curr Cancer Drug Targets. 2017;17:1–1. https://doi.org/10.2174/1568009617666170214102301.

    Article  CAS  Google Scholar 

  64. Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca A, et al. Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta. 1846;2014:26–39. https://doi.org/10.1016/j.bbcan.2014.03.005.

    Article  CAS  Google Scholar 

  65. Glavey SV, Manier S, Natoni A, Sacco A, Moschetta M, Reagan MR, et al. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood. 2014;124:1765–76. https://doi.org/10.1182/blood-2014-03-560862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, et al. Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia. 2016;30:1103–15. https://doi.org/10.1038/leu.2016.3.

    Article  PubMed  CAS  Google Scholar 

  67. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65. https://doi.org/10.1158/0008-5472.CAN-10-3323.

    Article  PubMed  CAS  Google Scholar 

  68. Clark R, Krishnan V, Schoof M, Rodriguez I, Theriault B, Chekmareva M, et al. Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. Am J Pathol. 2013;183:576–91. https://doi.org/10.1016/j.ajpath.2013.04.023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin receptor promotes Adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016;18:782–96. https://doi.org/10.1016/j.stem.2016.02.015.

    Article  PubMed  CAS  Google Scholar 

  70. • Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, et al. Exercise decreases marrow adipose tissue though ß-oxidation in obese running mice. J Bone Miner Res. 2017; https://doi.org/10.1002/jbmr.3159. This excellent work demonstrates that bone marrow adipose can be targeted with exercise, suggesting non-pharmacological ways to modulate bone marrow adipose tissue and providing new persepctives of how and why exercise may be so beneficial.

  71. Styner M, Pagnotti GM, Galior K, Wu X, Thompson WR, Uzer G, et al. Exercise regulation of marrow fat in the setting of PPARγ agonist treatment in female C57BL/6 mice. Endocrinology. 2015;156:2753–61. https://doi.org/10.1210/en.2015-1213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by MMCRI Start-up funds, a pilot project grant from NIH/NIGMS (P30GM106391), the NIH/NIDDK (R24DK092759-01), and the COBRE grant from the NIH/NIGMS (P20GM121301). This work was also funded in part by pilots from NIGMS/NIH P30 GM106391 and the American Cancer Society (Research Grant #IRG-16-191-33). This review was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number P30AR066261. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela R. Reagan.

Ethics declarations

Conflict of Interest

Carolyne Falank, Heather Fairfield, and Michaela R. Reagan each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology of Bone Metastasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falank, C., Fairfield, H. & Reagan, M.R. Reflections on Cancer in the Bone Marrow: Adverse Roles of Adipocytes. Curr Mol Bio Rep 3, 254–262 (2017). https://doi.org/10.1007/s40610-017-0074-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0074-6

Keywords

Navigation