Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

Abstract

Nanotechnology is an innovative and emerging discipline in the field of science and technology. With its broad application, it is now becoming a key part of life sciences, including approaches to target phytopathogens for disease management. Agrochemicals application against phytopathogens is not sustainable any more because of insufficient bioavailability of active and low-impact compounds. Hence, the nature of nanoparticles (NPs), nanoemulsions and nanoformulations make them efficient nanopesticides to target in a very efficient way, showing higher solubility, permeability and stability.This chapter will provide details on this technology as integrated in plant disease management.Antimicrobial action, potential and application of NPs and NPs-based nanopesticides for managing the plant diseases are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam, K. A., & Prasad, R. (2018). Nanobiotechnology applications in plant protection. Dordrecht: Springer. https://www.springer.com/us/book/9783319911601.

    Book  Google Scholar 

  • Agrawal, S., & Rathore, P. (2014). Nanotechnology pros and cons to agriculture: A review. International Journal of Current Microbiology and Applied Sciences, 3(3), 43–55.

    Google Scholar 

  • Agrios, G. N. (2005). Plant pathology (922 pp 5th edn.). Burlington: Elsevier Academic Press.

    Google Scholar 

  • Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment, 29, 221–236.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, N., Pandey, R., Barman, I., & Prasad, R. (2016). Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Frontiers in Microbiology, 7, 1984. https://doi.org/10.3389/fmicb.2016.01984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrak, H., Saied, T., Chevallier, P., Laroche, G., M’nif, A., & Hamzaoui, A. H. (2016). Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@ TMSEDTA. Arabian Journal of Chemistry, 1–8. https://doi.org/10.1016/j.arabjc.2016.04.019.

    Article  CAS  Google Scholar 

  • Bergeson, L. L. (2010). Nanosilver pesticide products: What does the future hold? Environmental Quality Management, 19, 73–82.

    Article  Google Scholar 

  • Bernardes, P. C., Nélio, J. D. A., & Nilda de Fátima, F. S. (2014). Nanotechnology in the food industry. Bioscience Journal, 30, 1919–1932.

    Google Scholar 

  • Bhagat, D., Samanta, S. K., & Bhattacharya, S. (2013). Efficient management of fruit pests by pheromone nanogels. Scientific Reports, 3, 1294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhan, S., Lalit, M., & Srivastava, C. N. (2014). Relative larvicidal potentiality of nano-encapsulated temephos and imidacloprid against Culex quinquefasciatus. Journal of Asia-Pacific Entomology, 17, 787–791.

    Article  CAS  Google Scholar 

  • Bhattacharyya, A., Bhaumik, A., Rani, P. U., Mandal, S., & Epidi, T. T. (2010). Nanoparticles A recent approach to insect pest control. African Journal of Biotechnology, 9, 3489–3493.

    CAS  Google Scholar 

  • Bonde, S. R., Rathod, D. P., Ingle, A. P., Ade, R. B., Gade, A. K., & Rai, M. K. (2012). Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanoscience Methods, 1, 25–36.

    Article  CAS  Google Scholar 

  • Bordes, P., Pollet, E., & Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34, 125–155.

    Article  CAS  Google Scholar 

  • Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12, 2163–2175.

    Article  CAS  PubMed  Google Scholar 

  • Branton, D., Deamer, D. W., Marziali, A., & el al, B. H. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26, 1146–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brecht, M., Datnoff, L., Nagata, R., & Kucharek, T. (2003). The role of silicon in suppressing tray leaf spot development in St. Augustine grass (pp. 1–4). Gainesville: Publication in University of Florida.

    Google Scholar 

  • Brecht, M. O., Datnoff, L. E., Kucharek, T. A., & Nagata, R. T. (2004). Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Disease, 88(4), 338–344.

    Article  CAS  PubMed  Google Scholar 

  • Brunel, F., El Gueddari, N. E., & Moerschbacher, B. M. (2013). Complexation of copper (II) with chitosan nanogels: Toward control of microbial growth. Carbohydrate Polymers, 92, 1348–1356.

    Article  CAS  PubMed  Google Scholar 

  • Campos, E. V. R., De Oliveira, J. L., Da Silva, C. M. G., Pascoli, M., Pasquoto, T., Lima, R., & Fraceto, L. F. (2015). Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Scientific Reports, 5, 13809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology, 22, 585–594.

    Article  CAS  Google Scholar 

  • Chen, L., Song, Y., Tang, B., Song, X., Yang, H., Li, B., et al. (2015). Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach. Ecotoxicology and Environmental Safety, 120, 418–427. https://doi.org/10.1016/j.ecoenv.2015.06.027.

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa, P., Kumar, N. B., Madhura, S., Kumar, M. S., Myers, K. L., Fry, W. E., & Cooke, D. E. (2013). Emergence of 13_ A 2 blue lineage of Phytophthora infestans was responsible for severe outbreaks of late blight on tomato in south-west India. Journal of Phytopathology, 161, 49–58.

    Article  CAS  Google Scholar 

  • Chuan, L., He, P., Pampolino, M. F., Johnston, A. M., Jin, J., Xu, X., & Zhou, W. (2013). Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crops Research, 140, 1–8.

    Article  Google Scholar 

  • Clement, J. L., & Jarrett, P. S. (1994). Antibacterial silver. Metal-Based Drugs, 1, 467–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cursino, L., Li, Y., Zaini, P. A., De La Fuente, L., Hoch, H. C., & Burr, T. J. (2009). Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiology Letters, 299, 193–199.

    Article  CAS  PubMed  Google Scholar 

  • Dubchak, S., Ogar, A., Mietelski, J. W., & Turnau, K. (2010). Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research, 1, 103–108.

    Article  Google Scholar 

  • Dubey, M., Bhadauria, S., & Kushwah, B. S. (2009). Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Digest Journal of Nanomaterials and Biostructures, 4, 537–543.

    Google Scholar 

  • Duebendorf, St. G. T. (2008). How do nanoparticles behave in the environment? NanoEco-Empa organized international meeting on nanoparticles in the environment. In B. Nowack and N. Mueller (Eds.), Environmental Science and Technology, http://pubs.acs.org/cgi-bin/asap.cgi/esthag/asap/html/es7029637.html

  • Dzhavakhiya, V., Shcherbakova, L., Semina, Y., Zhemchuzhina, N., & Campbell, B. (2012). Chemosensitization of plant pathogenic fungi to agricultural fungicides. Frontiers in Microbiology, 3, 1–9.

    Article  CAS  Google Scholar 

  • Esteban Tejeda, L., Malpartida, F., Esteban Cubillo, A., Pecharroman, C., & Moya, J. S. (2009). Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20, 505701.

    Article  CAS  PubMed  Google Scholar 

  • Gan, P. P., Ng, S. H., Huang, Y., & Li, S. F. Y. (2012). Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach. Bioresource Technology, 113, 132–135.

    Article  CAS  PubMed  Google Scholar 

  • Gha-Young, K., Joonmok, S., Min-Su, K., & Seung-Hyeon, M. (2008). Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. Journal of Environmental Monitoring, 10, 632–637.

    Article  CAS  Google Scholar 

  • Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29, 792–803.

    Article  CAS  PubMed  Google Scholar 

  • Gogoi, R., Dureja, P., & Singh, P. K. (2009). Nanoformulations – A safer and effective option for agrochemicals. Indian Farming, 59, 7–12.

    Google Scholar 

  • González-Fernández, R., Prats, E., Jorrín-Novo, J. V. (2010). Proteomics of plant pathogenic fungi. Journal of Biomedicine & Biotechnology, 2010, art. n. 932527.

    Google Scholar 

  • Gruère, G. P. (2012). Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy, 37, 191–198.

    Article  Google Scholar 

  • Gupta, K., Singh, R. P., Pandey, A., & Pandey, A. (2013). Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein Journal of Nanotechnology, 4, 345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hettiarachchi, M. A., & Wickramarachchi, P. A. S. R. (2011). Synthesis of chitosan stabilized silver nanoparticles using gamma ray irradiation and characterization. Journal of Science, 6, 65–75.

    Google Scholar 

  • Ingham, B. (2015). X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 21, 229–303.

    Article  Google Scholar 

  • Ismail, M., Prasad, R., Ibrahim, A. I. M., & Ahmed, I. S. A. (2017). Modern prospects of nanotechnology in plant pathology. In R. Prasad, M. Kumar, & V. Kumar (Eds.), Nanotechnology (pp. 305–317). Singapore: Springer Nature.

    Chapter  Google Scholar 

  • Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93, 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  • Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12, 407–409.

    Article  CAS  Google Scholar 

  • Johnston, C. T. (2010). Probing the nanoscale architecture of clay minerals. Clay Minerals, 45(3), 245–279.

    Article  CAS  Google Scholar 

  • Kah, M., & Hofmann, T. (2014). Nanopesticide research: Current trends and future priorities. Environment International, 63, 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Kanto, T., Miyoshi, A., Ogawa, T., Maekawa, K., & Aino, M. (2004). Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. Journal of General Plant Pathology, 70, 207–211.

    Article  CAS  Google Scholar 

  • Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal, 13, 214–231.

    Article  CAS  Google Scholar 

  • Khan, I., Yamani, Z. H., & Qurashi, A. (2017). Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ultrasonics Sonochemistry, 34, 484–490.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. H., Lee, D. K., Cha, H. G., Kim, C. W., Kang, Y. C., & Kang, Y. S. (2006). Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. The Journal of Physical Chemistry B, 110, 24923–24928.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84, 151–157.

    Article  CAS  Google Scholar 

  • Kumar, R. R., Priyadharsani, K. P., & Thamaraiselvi, K. (2012). Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. Journal of Nanoparticle Research, 14, 860.

    Article  CAS  Google Scholar 

  • Lauterwasser, C. (2006). Small sizes that matter: Opportunities and risks of nanotechnologies. Report in cooperation with the OECD International Futures Programme. Munchen: Allianz Center for Technology. 45 pp.

    Google Scholar 

  • Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews. Microbiology, 11, 371.

    Article  CAS  PubMed  Google Scholar 

  • Lhomme, L., Brosillon, S., & Wolbert, D. (2008). Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere, 70, 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Li, L. S., Hu, J., Yang, W., & Alivisatos, A. P. (2001). Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Letters, 1, 349–351.

    Article  CAS  Google Scholar 

  • Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858.

    Article  CAS  Google Scholar 

  • Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A. R., Agüera, A., & Rodrıguez, A. (2002). Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today, 76, 209–220.

    Article  CAS  Google Scholar 

  • Manczinger, L., Antal, Z., & Kredics, L. (2002). Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiologica et Immunologica Hungarica, 49, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Mathew, A. P., Laborie, M. P., & Oksman, K. (2009). Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules, 10, 1627–1632.

    Article  CAS  PubMed  Google Scholar 

  • Medici, S., Peana, M., Nurchi, V. M., Lachowicz, J. I., Crisponi, G., & Zoroddu, M. A. (2015). Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, 284, 329–350.

    Article  CAS  Google Scholar 

  • Melemeni, M., Stamatakis, D., Xekoukoulotakis, N. P., Mantzavinos, D., & Kalogerakis, N. (2009). Disinfection of municipal wastewater by TiO2 phtocatalysis with UV-A, visible and solar irradiation and BDD electrolysis. Global NEST Journal, 11, 357–363.

    Google Scholar 

  • Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., & Lee, Y. S. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathology Journal, 25, 376–380.

    Article  CAS  Google Scholar 

  • Mishra, S., & Singh, H. B. (2015). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99, 1097–1107.

    Article  CAS  PubMed  Google Scholar 

  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, K. (Ed.) (2008). Nanotechnology: Agriculture’s Next“Industrial” Revolution (Williston, VT: Financial Partner, Yankee Farm Credit, ACA). Spring, pp 3–5.

    Google Scholar 

  • Nayak, R., Pradhan, N., Behera, D., Pradhan, K., Mishra, S., Sukla, L., & Mishra, B. (2011). Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. Journal of Nanoparticle Research, 13, 3129–3137.

    Article  CAS  Google Scholar 

  • Nel, A., Xia, T., Madler, L., & Li, N. (2003). Toxic potential of materials at the nano level. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  • Nowack, B. (2009). Is anything out there? What life cycle perspectives of nano-products can tell us about nanoparticles in the environment. Nano Today, 4, 11–12.

    Article  CAS  Google Scholar 

  • Oliveira, M. M., Ugarte, D., Zanchet, D., & Zarbin, A. J. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 292, 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., & Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6, 411–414.

    Article  CAS  Google Scholar 

  • Park, H. J., Kim, S. H., Kim, H. J., & Choi, S. H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. The Plant Pathology Journal, 22, 295–302.

    Article  Google Scholar 

  • Patra, P., Mitra, S., Debnath, N., & Goswami, A. (2012). Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: An in vivo and in vitro toxicity study. Langmuir, 28, 16966–16978.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2, 32.

    Article  Google Scholar 

  • Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94, 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., & Yadav, A. (2013). Plants as potential synthesiser of precious metal nanoparticles: Progress and prospects. IET Nanobiotechnology, 7, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Retchkiman-Schabes, P. S., Canizal, G., Becerra-Herrera, C. R., Zorrilla, H. B., & Liu, J. A. (2006). Ascencio biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optical Materials, 29, 95–99.

    Article  CAS  Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85, 162–170.

    CAS  Google Scholar 

  • Satalkar, P., Elger, B. S., & Shaw, D. M. (2016). Defining nano, nanotechnology and nanomedicine: Why should it matter? Science and Engineering Ethics, 22, 1255–1276.

    Article  PubMed  Google Scholar 

  • Schaller, M., Laude, J., Bodewaldt, H., Hamm, G., & Korting, H. C. (2004). Toxicity and antimicrobial activity of a hydrocolloid dressing containing silver particles in an ex vivo model of cutaneous infection. Skin Pharmacology and Physiology, 17, 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Scott, N, Chen, H. (2003). Nanoscale science and engineering for agriculture and food systems. USDA National Planning Workshop (November 18–19, 2002), Washington, DC, 63 pp.

    Google Scholar 

  • Sharma, K., Sharma, R., Shit, S., Gupata, S. (2012). Nanotechnological application on diagnosis of a plant disease. Int. Conf. on Advances in Biological and Medical Sciences, 1–2.

    Google Scholar 

  • Sharon, M., Choudhary, A. K., & Kumar, R. (2010). Nanotechnology in agricultural diseases and food safety. Journal of Phytolpathology, 2, 83–92.

    Google Scholar 

  • Shin, W. K., Cho, J., Kannan, A. G., Lee, Y. S., & Kim, D. W. (2016). Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Scientific Reports, 6, 26332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofi, W., Gowri, M., Shruthilaya, M., Rayala, S., & Venkatraman, G. (2012). Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infectious Diseases, 12, 60.

    Article  Google Scholar 

  • Sotthivirat, S., Lubach, J. W., Haslam, J. L., Munson, E. J., & Stella, V. J. (2007). Characterization of prednisolone in controlled porosity osmotic pump pellets using solid-state NMR spectroscopy. Jounal of Pharmaceutical Science, 96(5), 1008–1017.

    Article  CAS  Google Scholar 

  • Thomas, S., & McCubbin, P. (2003). A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. Journal of Wound Care, 12, 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Tournas, V. H. (2005). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 31, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, A. R., Joyce, H. J., Tan, H. H., Jagadish, C., & Micolich, A. P. (2017). The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. Nanotechnology, 28, 454001.

    Article  CAS  PubMed  Google Scholar 

  • Vu, H. T., Keough, M. J., Long, S. M., & Pettigrove, V. J. (2015). Effects of the boscalid fungicide Filan® on the marine amphipod Allorchestes compressa at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 35, 1130–1137.

    Article  CAS  Google Scholar 

  • Wang, L., Li, X., Zhang, G., Dong, J., & Eastoe, J. (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314, 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Lawson, R., Ray, P. C., & Yu, H. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27, 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, D., Sun, W., Qian, W., Ye, Y., & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research, 344, 2375–2382.

    Article  CAS  PubMed  Google Scholar 

  • Woo, K. S., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Mooyoung, J., et al. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology, 19, 760–764.

    Google Scholar 

  • Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77, 2325–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Huang, K., Wang, Y., & Liu, S. (2005). Study on anti-pollution nano-preparation of dimethomorph and its performance. Chinese Science Bulletin, 50, 108–112.

    Article  CAS  Google Scholar 

  • Ying, J. Y. (2009). Nanobiomaterials. Nano Today, 4, 1–2.

    Article  Google Scholar 

  • Zaini, P. A., De La Fuente, L., Hoch, H. C., & Burr, T. J. (2009). Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiology Letters, 295, 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, H., Li, X. F., Zhang, G. Y., & Dong, J. F. (2008). Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. Journal of Dispersion Science and Technology, 29, 358–361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ul Haq, I., Ijaz, S., Khan, N.A. (2020). Application of Nanotechnology for Integrated Plant Disease Management. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_8

Download citation

Publish with us

Policies and ethics