Skip to main content

Phase-Amplitude Reduction of Limit Cycling Systems

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

Optimization and control of collective dynamics in rhythmic systems have attracted increasing interest, and various methods have been developed on the basis of the phase reduction framework for limit cycle oscillators. The phase reduction relies on the notion of the isochron, which represents the set of system states that share the same asymptotic phase. However, the phase reduction does not take into account the amplitude degrees of freedom representing deviations of the system state from the limit cycle attractor, to which some rich and nontrivial transient behaviors of the oscillators are attributed. In this chapter, after a brief introduction of the phase reduction framework, a phase-amplitude reduction framework that is applicable to transient dynamics far from the limit cycle attractor is formulated. A rigorous theoretical background for defining the amplitudes is provided by the notion of the isostable, which naturally complements the isochron in the sense that both of them can be understood from a unified viewpoint of the spectral properties of the Koopman operator. The utility of the proposed phase-amplitude reduction framework is illustrated by evaluating the optimal injection timing of a weak control input that efficiently suppresses deviations of the system state from the limit cycle attractor.

The text of Sect. 15.3 is adapted from [78], with permission of AIP Publishing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, I., De la Torre, G., Murphey, T.D.: Model-based control using Koopman operators. In: Proceedings of Robotics: Science and Systems (2017)

    Google Scholar 

  2. Acebrón, J.A., Bonilla, L.L., Pérez Vincente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77 (2005)

    Article  Google Scholar 

  3. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6 (2016)

    Google Scholar 

  5. Brown, E., Moehlis, J., Holmes, P.: On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16 (2004)

    Article  MATH  Google Scholar 

  6. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11 (2016)

    Article  Google Scholar 

  7. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castejón, O., Guillamon, A., Huguet, G.: Phase-Amplitude response functions for transient-state stimuli. J. Math. Neurosci. 3 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colonius, F., Kliemann, W.: Dynamical Systems and Linear Algebra. American Mathematical Society, Providence (2014)

    Book  MATH  Google Scholar 

  10. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (1993)

    Article  MATH  Google Scholar 

  11. Dasanayake, I., Li, J.-S.: Optimal design of minimum-power stimuli for phase models of neuron oscillators. Phys. Rev. E 83 (2011)

    Google Scholar 

  12. Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. USA 110 (2013)

    Google Scholar 

  13. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Proc. Autom. 50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eldering, J., Kvalheim, M., Revzen, S.: Global linearization and fiber bundle structure of invariant manifolds. Nonlinearity 31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ermentrout, G.B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8 (1996)

    Article  Google Scholar 

  16. Ermentrout, B., Park, T., Wilson, D.: Recent advances in coupled oscillator theory. Philos. Trans. R. Soc. A 377 (2019)

    Article  Google Scholar 

  17. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)

    Book  MATH  Google Scholar 

  18. Froyland, G., Hüls, T., Morriss, G.P., Watson, T.M.: Computing covariant Lyapunov vectors, Oseledets vectors, and dichotomy projectors: a comparative numerical study. Phys. D 247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaeta, G.: Poincaré Normal and Renormalized Forms. Acta Appl. Math. 70 (2002)

    Google Scholar 

  20. Goldobin, D.S., Teramae, J.-N., Nakao, H., Ermentrout, G.B.: Dynamics of limit-cycle oscillators subject to general noise. Phys. Rev. Lett. 105 (2010)

    Google Scholar 

  21. Goswami, D., Paley, D.A.: Global bilinearization and controllability of control-affine nonlinear systems: a Koopman spectral approach. In: 56th Annual Conference on Decision and Control pp. 6107–6112 (2017)

    Google Scholar 

  22. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Hale, J.K.: Ordinary Differential Equations. Dover Publications, New York (2009)

    Google Scholar 

  24. Harada, T., Tanaka, H.-A., Hankins, M.J., Kiss, I.Z.: Optimal waveform for the entrainment of a weakly forced oscillator. Phys. Rev. Lett. 105 (2010)

    Google Scholar 

  25. Hitczenko, P., Medvedev, G.S.: The Poincaré map of randomly perturbed periodic motion. J. Nonlinear Sci. 23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)

    Book  MATH  Google Scholar 

  27. Hoppensteadt, F.C.: Analysis and Simulation of Chaotic Systems. Springer, New York (2000)

    MATH  Google Scholar 

  28. Hüls, T.: Computing stable hierarchies of fiber bundles. Discret. Contin. Dyn. Syst. Ser. B 22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control (2017). arXiv:1707.01146

  30. Kawamura, Y., Nakao, H.: Collective phase description of oscillatory convection. Chaos 23D (2013)

    Google Scholar 

  31. Kawamura, Y., Shirasaka, S., Yanagita, T., Nakao, H.: Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems. Phys. Rev. E 96 (2017)

    Google Scholar 

  32. Keener, J.P.: Principles of Applied Mathematics. Westview Press, Boulder (2001)

    Google Scholar 

  33. Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Springer, New York (2009)

    Book  MATH  Google Scholar 

  34. Kiss, I.Z., Rusin, C.G., Kori, H., Hudson, J.L.: Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Korda, M., Mezic, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kotani, K., Yamaguchi, I., Ogawa, Y., Jimbo, Y., Nakao, H., Ermentrout, G.B.: Adjoint method provides phase response functions for delay-induced oscillations. Phys. Rev. Lett. 109 (2012)

    Google Scholar 

  38. Kowalski, K., Steeb, W.H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  39. Kuptsov, P.V., Parlitz, U.: Theory and computation of covariant Lyapunov vectors. J. Nonlinear Sci. 22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Arakaki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39. Springer, New York (1975)

    Google Scholar 

  41. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  42. Kvalheim, M.D., Revzen, S.: Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits (2019). arXiv:1911.11996

  43. Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Phys. D 242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, Q., Dietrich, F., Bollt, E.M., Kevrekidis, I.G.: Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9 (2018)

    Google Scholar 

  46. Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory. Gostexizdat, Moskow (1956). (in Russian)

    Google Scholar 

  47. Mardt, A., Pasquali, L., Wu, H., Noé, F.: VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9 (2018)

    Google Scholar 

  48. Matthews, P.C., Mirollo, R.E., Strogatz, S.H.: Dynamics of a large system of coupled nonlinear oscillators. Phys. D 52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mauroy, A., Mezić, I.: On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos 22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mauroy, A., Mezić, I.: Global computation of phase-amplitude reduction for limit-cycle dynamics. Chaos 28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mauroy, A., Mezić, I., Moehlis, J.: Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D 261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mauroy, A., Rhoads, B., Moehlis, J., Mezic, I.: Global isochrons and phase sensitivity of bursting neurons. SIAM J. Appl. Dyn. Syst. 13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mauroy, A.: Converging to and escaping from the global equilibrium: isostables and optimal control. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 5888–5893 (2014)

    Google Scholar 

  54. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mezić, I.: Spectum of the Koopman Operator, Spectral Expansions in Functional Spaces, and State-Space Geometry. J. Nonlinear Sci. (2019)

    Google Scholar 

  56. Mikhailov, A.S., Ertl, G.: Chemical Complexity. Springer International Publishing, Cham (2017)

    Book  Google Scholar 

  57. Moehlis, J., Shea-Brown, E., Rabitz, H.: Optimal inputs for phase models of spiking neurons. J. Comput. Nonlinear Dyn. 1 (2006)

    Article  Google Scholar 

  58. Mohr, R., Mezić, I.: Construction of eigenfunctions for scalar-type operators via Laplace averages with connections to the Koopman operator (2014). arXiv:1403.6559

  59. Monga, B., Wilson, D., Matchen, T., Moehlis, J.: Phase reduction and phase-based optimal control for biological systems: a tutorial. Biol. Cybern. (2018)

    Google Scholar 

  60. Nakao, H.: Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57 (2016)

    Article  Google Scholar 

  61. Nakao, H., Mikhailov, A.S.: Diffusion-induced instability and chaos in random oscillator networks. Phys. Rev. E 79 (2009)

    Google Scholar 

  62. Nakao, H., Yanagita, T., Kawamura, Y.: Phase reduction approach to synchronization of spatiotemporal rhythms in reactiondiffusion systems. Phys. Rev. X 4 (2014)

    Google Scholar 

  63. Novičenko, V., Pyragas, K.: Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems. Phys. D 241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Otto, S.E., Rowley, C.W.: Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl. Dyn. Syst. 18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. Park, Y., Shaw, K.M., Chiel, H.J., Thomas, P.J.: The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems. Eur. J. Appl. Math. 29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  67. Pikovsky, A.: Maximizing coherence of oscillations by external locking. Phys. Rev. Lett. 115 (2015)

    Google Scholar 

  68. Pikovsky, A., Politi, A.: Lyapunov Exponents: A Tool to Explore Complex Dynamics. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  69. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rodrigues, F.A., Peron, T.K.DM., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter. P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)

    MATH  Google Scholar 

  73. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Schultheiss, N.W., Prinz, A.A., Butera, R.J. (eds.): Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis. Springer, New York (2011)

    Google Scholar 

  75. Shilnilov, L.P., Shilnilov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. Part I. World Scientific, Singapore (1998)

    Book  Google Scholar 

  76. Shirasaka, S., Watanabe, N., Kawamura, Y., Nakao, H.: Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling. Phys. Rev. E 96 (2017)

    Google Scholar 

  77. Shirasaka, S., Kurebayashi, W., Nakao, H.: Phase reduction theory for hybrid nonlinear oscillators. Phys. Rev. E 95 (2017)

    Google Scholar 

  78. Shirasaka, S., Kurebayashi, W., Nakao, H.: Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems. Chaos 27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  79. Skardal, P.S., Taylor, D., Sun, J.: Optimal synchronization of complex networks. Phys. Rev. Lett. 113 (2014)

    Google Scholar 

  80. Skardal, P.S., Taylor, D., Sun, J.: Optimal synchronization of directed complex networks. Chaos 26 (2016)

    Article  MathSciNet  Google Scholar 

  81. Sootla, A., Mauroy, A., Ernst, D.: Optimal control formulation of pulse-based control using Koopman operator. Automatica 91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  82. Stankovski, T., Pereira, T., McClintock, P.V.E., Stefanovska, A.: Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89 (2017)

    Google Scholar 

  83. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  84. Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E.: Crowd synchrony on the Millennium bridge. Nature 438 (2005)

    Article  Google Scholar 

  85. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview press, Boulder (2014)

    MATH  Google Scholar 

  86. Taira, K., Nakao, H.: Phase-response analysis of synchronization for periodic flows. J. Fluid. Mech. 846 (2018)

    Google Scholar 

  87. Takeishi, N., Kawahara, Y., Yairi, Y.: Learning koopman invariant subspaces for dynamic mode decomposition. In: Advances in Neural Information Processing Systems, pp. 1130–1140 (2017)

    Google Scholar 

  88. Tass, P.A.: Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Springer, Berlin (2007)

    MATH  Google Scholar 

  89. Tinsley, M.R., Nkomo, S., Showalter, K.: Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8 (2012)

    Article  Google Scholar 

  90. Traversa, F.L., Bonnin, M., Corinto, F., Bonani, F.: Noise in oscillators: a review of state space decomposition approaches. J. Comput. Electron. 14 (2015)

    Article  Google Scholar 

  91. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2014)

    Google Scholar 

  92. Watanabe, N., Kato, Y., Shirasaka, S., Nakao, H.: Optimization of linear and nonlinear interaction schemes for stable synchronization of weakly coupled limit-cycle oscillators. Phys. Rev. E 100 (2019)

    Google Scholar 

  93. Wedgwood, K.C.A., Lin, K.K., Thul, R., Coombes, S.: Phase-amplitude descriptions of neural oscillator models. J. Math. Neurosci. 3 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  94. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  95. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A DataDriven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  96. Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A kernel-based method for data-driven koopman spectral analysis. J. Comput. Dyn. 2015 (2015)

    Google Scholar 

  97. Wilson, D.: Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers. Phys. Rev. E 99 (2019)

    Google Scholar 

  98. Wilson, D., Ermentrout, G.B.: Greater accuracy and broadened applicability of phase reduction using isostable coordinates. J. Math. Biol. 76 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  99. Wilson, D., Ermentrout, B.: Phase Models Beyond Weak Coupling. Phys. Rev. Lett. 123 (2019)

    Google Scholar 

  100. Wilson, D., Holt, A.B., Netoff, T.I., Moehlis, J.: Optimal entrainment of heterogeneous noisy neurons. Front. Neurosci. 29 (2015)

    Google Scholar 

  101. Wilson, D., Moehlis, J.: Extending phase reduction to excitable media: theory and applications. SIAM Rev. 57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  102. Wilson, D., Moehlis, J.: Isostable reduction with applications to time-dependent partial differential equations. Phys. Rev. E 94 (2016)

    Google Scholar 

  103. Wilson, D., Moehlis, J.: Isostable reduction of periodic orbits. Phys. Rev. E 94 (2016)

    Google Scholar 

  104. Wilson, D., Moehlis, J.: Spatiotemporal control to eliminate cardiac alternans using isostable reduction. Phys. D 342 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  105. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (2001)

    Book  MATH  Google Scholar 

  106. Yeung, E., Kundu, S., Hodas, N.: Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems. In: 2019 American Control Conference, pp. 4832–4839 (2019)

    Google Scholar 

  107. Yoshimura, K., Arai, K.: Phase reduction of stochastic limit cycle oscillators. Phys. Rev. Lett. 101 (2008)

    Google Scholar 

  108. Zlotnik, A., Chen, Y., Kiss, I.Z., Tanaka, H.-A., Li, J.-S.: Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. Phys. Rev. Lett. 111 (2013)

    Google Scholar 

  109. Zlotnik, A., Nagao, R., Kiss, I.Z., Li, J.-S.: Phase-selective entrainment of nonlinear oscillator ensembles. Nat. Commun. 7 (2016)

    Google Scholar 

Download references

Acknowledgements

S. S. acknowledges financial support from Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. 18H06478. W. K. acknowledges financial support from JSPS KAKENHI Grants No. 16K16125 No. 17H03279. H. N. acknowledges financial support from JSPS KAKENHI Grants No. 16K13847, No. 17H03279, No. 18K03471, No. 18H03287, and JST CREST Grant No. JPMJCR1913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Shirasaka .

Editor information

Editors and Affiliations

Appendix: Laplace Average

Appendix: Laplace Average

 

In this appendix, we propose a simpler version of the Laplace average [49, 54]. The following results also hold for complex Koopman eigenvalues \(\lambda \). When \(\mathbf {F}\) is a nonresonant analytic vector field, a generic scalar-valued observable function f can be expressed as [55]

$$\begin{aligned} f(\mathbf {x}) = \sum _{k\in \mathbb {Z},\ \mathbf {m}\in \mathbb {Z}_{\ge 0}^{N-1}}{a_{k,\mathbf {m}}(f)\phi _{\lambda _{k,\mathbf {m}}}(\mathbf {x})}, \end{aligned}$$
(15.65)

where \(\mathbf {m}=(m_2,m_3,\ldots ,m_N)\). The complex coefficients \(a_{k,\mathbf {m}}(f) \in \mathbb {C}\) are called the Koopman modes, \(\lambda _{k,\mathbf {m}} = k\lambda _1 + \sum _{i=2}^N{m_i \lambda _{i}}\) are the eigenvalues of the infinitesimal generator of the Koopman operator semigroup, and

$$\begin{aligned} \phi _{\lambda _{k,\mathbf {m}}}(\mathbf {x}):=e^{\mathrm{i}k\theta (\mathbf {x})}\phi _{\lambda _2}^{m_2}(\mathbf {x}) \phi _{\lambda _3}^{m_3}(\mathbf {x}) \cdots \phi _{\lambda _N}^{m_N}(\mathbf {x}) \end{aligned}$$
(15.66)

are their associated eigenfunctions. When the observable can be expanded as (15.65), we can evaluate the value of a Koopman eigenfunction at point \(\mathbf {x}\) by using the generalized Laplace average [54] as

$$\begin{aligned}&a_{k,\mathbf {m}}(f)\phi _{\lambda _{k,\mathbf {m}}}(\mathbf {x}) \nonumber \\ =&\lim _{s \rightarrow \infty }{\dfrac{1}{s}\int _0^s{\left[ f\circ \mathbf {S}(t,\mathbf {x}) - \sum _{\mathrm{Re}(\lambda _{k,\mathbf {m}'}) \ge \mathrm{Re}(\lambda _{k,\mathbf {m}})}{a_{k,\mathbf {m}'}(f)\phi _{\lambda _{k,\mathbf {m}'}}(\mathbf {x})e^{\lambda _{k,\mathbf {m}'} t}}\right] e^{-\lambda _{k, \mathbf {m}} t}}\mathrm {d}t }, \end{aligned}$$
(15.67)

where \(\mathrm{Re}(\lambda )\) is the real part of \(\lambda \).

If we evaluate the value of the Jth principal Koopman eigenfunction associated with the Floquet exponent \(\text{ Re } (\lambda _J) \; (> 2 \text{ Re } (\lambda _2))\), we can simplify the generalized Laplace average using an observable \(g_J\) defined as

$$\begin{aligned} g_J(\mathbf {x}) = \nabla r_J(\mathbf {x}_0(\theta _*)) \cdot (\mathbf {x} - \mathbf {x}_0(\theta _*)), \end{aligned}$$
(15.68)

where \(\theta _* = \theta (\mathbf {x})\). Since this observable converges to zero along a transient orbit, we obtain \(a_{k,\mathbf {0}}(g_J)=0\) for all \(k\in \mathbb {Z}\), where \(\mathbf {0}\) is a zero vector. The gradient of \(g_J\) evaluated on the periodic orbit \(\chi \) is given by

$$\begin{aligned} \nabla g_J (\mathbf {x}_0(\theta _*))&= (\mathbf {I} - \nabla \theta (\mathbf {x}_0(\theta _*)) \mathbf {F}(\mathbf {x}_0(\theta _*))^\dag ) \nabla r_J(\mathbf {x}_0(\theta _*)) \nonumber \\&= \nabla r_J(\mathbf {x}_0(\theta _*)), \end{aligned}$$
(15.69)

where \(\mathbf {I}\) is the identity matrix and we used the fact [41, Sect. 3.4] that \(\mathbf {F}(\mathbf {x}_0(\theta _*))\) is parallel to \({\varvec{\gamma }}_1(\mathbf {x}_0(\theta _*))\) and the bi-orthogonal relation (15.51).

Let us denote a vector which has a nonzero element of value q only at the \((p-1)\)th component as \(\mathbf {m}_{p,q}\). Because \(r_p=0\) on \(\chi \), the gradient of f evaluated on \(\chi \) contains the following terms corresponding to \(\mathbf {m}_{p,1}\):

$$\begin{aligned} \sum _{k\in \mathbb {Z}}{a_{k,\mathbf {m}_{p,1}}(f) e^{\mathrm{i}k\theta _*} \nabla r_p(\mathbf {x}_0(\theta _*))}. \end{aligned}$$
(15.70)

It can be easily shown that all other components corresponding to \(|\mathbf {m}|_1 \ge 2\), where \(|\cdot |_1\) is the \(l^1\)-norm, do not contribute to the gradient \(\nabla f\) on \(\chi \) since \(r_p=0\) on the periodic orbit. We can then obtain the Koopman modes \(a_{k,\mathbf {m}_{p,1}}(f)\) for the generic observable f from its gradient evaluated on the periodic orbit \(\chi \) as follows. First, we take a phase-wise inner product of \(\nabla f(\mathbf {x}_0(\theta _*))\) and \(e^{-\mathrm{i}k \theta _* } {\varvec{\gamma }}_p(\mathbf {x}_0(\theta _*))\), which we denote by \(\tilde{z}(\theta _*)\). Then we evaluate the average of \(\tilde{z}(\theta _*)\) over the circle. From Eq. (15.69), there is only one nonzero Koopman mode for \(|\mathbf {m}|_1 \le 1\), i.e., \(a_{0,\mathbf {m}_{J,1}}(g_J)=1\) for the observable \(g_J\). In general, the Koopman modes associated with the non-principal eigenfunctions with \(|\mathbf {m}|_1 \ge 2\) are nonzero even for the observable \(g_J\). However, when \(\text{ Re } (\lambda _J) \; > 2 \text{ Re } (\lambda _2)\) holds, all the Koopman modes \(a_{k,\mathbf {m}'}(g_J)\) involved in the generalized Laplace average (15.67) are zero.

Thus, we can replace the generalized Laplace average with the following Laplace average when we evaluate the Jth principal Koopman eigenfunction:

$$\begin{aligned} a_{0,\mathbf {m}_{J,1}}(g_J)\phi _{\lambda _J}(\mathbf {x}) = \lim _{s \rightarrow \infty }{\dfrac{1}{s}\int _0^s{g_J\circ \mathbf {S}(t,\mathbf {x})e^{-\lambda _J t}}\mathrm {d}t }. \end{aligned}$$
(15.71)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirasaka, S., Kurebayashi, W., Nakao, H. (2020). Phase-Amplitude Reduction of Limit Cycling Systems. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_15

Download citation

Publish with us

Policies and ethics