Skip to main content
Log in

Theory and Computation of Covariant Lyapunov Vectors

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Lyapunov exponents are well-known characteristic numbers that describe growth rates of perturbations applied to a trajectory of a dynamical system in different state space directions. Covariant (or characteristic) Lyapunov vectors indicate these directions. Though the concept of these vectors has been known for a long time, they became practically computable only recently due to algorithms suggested by Ginelli et al. [Phys. Rev. Lett. 99, 2007, 130601] and by Wolfe and Samelson [Tellus 59A, 2007, 355]. In view of the great interest in covariant Lyapunov vectors and their wide range of potential applications, in this article we summarize the available information related to Lyapunov vectors and provide a detailed explanation of both the theoretical basics and numerical algorithms. We introduce the notion of adjoint covariant Lyapunov vectors. The angles between these vectors and the original covariant vectors are norm-independent and can be considered as characteristic numbers. Moreover, we present and study in detail an improved approach for computing covariant Lyapunov vectors. Also we describe how one can test for hyperbolicity of chaotic dynamics without explicitly computing covariant vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK users’ guide (1999)

  • Anishchenko, V.S., Kopeikin, A.S., Kurths, J., Vadivasova, T.E., Strelkova, G.I.: Studying hyperbolicity in chaotic systems. Phys. Lett. A 270, 301–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Baier, G., Klein, M.: Maximum hyperchaos in generalized Hénon map. Phys. Lett. A 151, 281–284 (1990)

    Article  MathSciNet  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: All Lyapunov characteristic numbers are effectively computable. C. R. Acad. Sci. Paris, Sér. A 286, 431–433 (1978)

    MathSciNet  MATH  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I: theory. Part II: numerical application. Meccanica 15, 9–30 (1980)

    Article  MATH  Google Scholar 

  • Bochkanov, S., Bystritsky, V.: ALGLIB NET. Electronic resource. http://www.alglib.net (1999)

  • Buizza, R., Palmer, T.: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci. 52, 1434–1456 (1995)

    Article  Google Scholar 

  • Buizza, R., Tribbia, J., Molteni, F., Palmer, T.: Computation of optimal unstable structures for a numerical weather prediction model. Tellus A 45, 388–407 (1993)

    Article  Google Scholar 

  • Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  Google Scholar 

  • Ershov, S.V., Potapov, A.B.: On the concept of stationary Lyapunov basis. Physica D 118, 167–198 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Frederiksen, J.S.: Adjoint sensitivity and finite-time normal mode disturbances during blocking. J. Atmos. Sci. 54, 1144–1165 (1997)

    Article  Google Scholar 

  • Geist, K., Parlitz, U., Lauterborn, W.: Comparision of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 83, 875–893 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., Politi, A.: Characterizing dynamics with covariant Lyapunov vectors. Phys. Rev. Lett. 99, 130601 (2007)

    Article  Google Scholar 

  • Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Knyazev, A.V., Argentati, M.E.: Principal angles between subspaces in A-based scalar product: Algorithms and perturbation estimates. SIAM J. Sci. Comput. 23, 2008–2040 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuptsov, P.V.: Vychislenie pokazateley Lyapunova dlya raspredelennyh sistem: preimuschestva i nedostatki razlichnyh chislennyh metodov. Izv. Vuz. Prik. Nelinejn. Din. 5 (2010). [Computation of Lyapunov exponents for spatially extended systems: advantages and limitations of various numerical methods, Appl. Nonlinear Dyn. 5 (2010) (in Russian)]

  • Kuptsov, P.V., Kuznetsov, S.P.: Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor. Phys. Rev. E 80, 016205 (2009)

    Article  MathSciNet  Google Scholar 

  • Kuptsov, P.V., Parlitz, U.: Strict and fussy mode splitting in the tangent space of the Ginzburg–Landau equation. Phys. Rev. E 81, 036214 (2010)

    Article  Google Scholar 

  • Kuznetsov, S.P., Sataev, I.R.: Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: numerical test for expanding and contracting cones. Phys. Lett. A 365, 97–104 (2007)

    Article  MATH  Google Scholar 

  • Lai, Y.-C., Grebogi, C., Yorke, J.A., Kan, I.: How often are chaotic saddles nonhyperbolic? Nonlinearity 6, 779 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Legras, B., Vautard, R.: A guide to Lyapunov vectors. In: Palmer, T. (ed.) Predictability Seminar Proc., ECWF Seminar, vol. 1, pp. 135–146. European Centre for Medium-Range Weather Forecasts, Reading (1996)

    Google Scholar 

  • Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  • Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Tr. Mosk. Mat. Obŝ. 19, 197–231 (1968) [Mosc. Math. Soc. 19, 197–231 (1968)]

    MathSciNet  Google Scholar 

  • Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems, p. 348. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Pazó, D., López, J.M.: Characteristic Lyapunov vectors in chaotic time-delayed systems. Phys. Rev. E 82, 056201 (2010)

    Article  Google Scholar 

  • Pazó, D., Szendro, I.G., López, J.M., Rodríguez, M.A.: Structure of characteristic Lyapunov vectors in spatiotemporal chaos. Phys. Rev. E 78, 016209 (2008)

    Article  Google Scholar 

  • Pazó, D., Rodríguez, M.A., López, J.M.: Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors. Tellus 62A, 10–23 (2010)

    Google Scholar 

  • Reynolds, C.A., Errico, R.M.: Convergence of singular vectors toward Lyapunov vectors. Mon. Weather Rev. 127, 2309–2323 (1999)

    Article  Google Scholar 

  • Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. Math. IHÉS 50, 27–58 (1979)

    MathSciNet  MATH  Google Scholar 

  • Samelson, R.M., Wolfe, C.L.: Lyapunov vectors for large systems. In: Exploring Complex Dynamics in High-Dimensional Chaotic Systems: From Weather Forecasting to Oceanic Flows. MPIPKS, Dresden (2010). http://www.pks.mpg.de/~ecodyc10/Contributions/Samelson.pdf

    Google Scholar 

  • Shimada, I., Nagashima, T.: A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theor. Phys. 61, 1605–1616 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Szendro, I.G., Pazó, D., Rodríguez, M.A., López, J.M.: Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices. Phys. Rev. E 76, 025202 (2007)

    Article  Google Scholar 

  • Toth, Z., Kalnay, E.: Ensemble forecasting at NMC: the generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317–2330 (1993)

    Article  Google Scholar 

  • Toth, Z., Kalnay, E.: Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 125, 3297–3319 (1997)

    Article  Google Scholar 

  • Trevisan, A., Pancotti, F.: Periodic orbits, Lyapunov vectors, and singular vectors in the Lorenz system. J. Atmos. Sci. 55, 390–398 (1998)

    Article  MathSciNet  Google Scholar 

  • Vastano, J.A., Moser, R.D.: Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow. J. Fluid Mech. 233, 83–118 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfe, C.L., Samelson, R.M.: An efficient method for recovering Lyapunov vectors from singular vectors. Tellus A 59A, 355–366 (2007)

    Article  Google Scholar 

  • Yang, H.-L., Radons, G.: Comparison between covariant and orthogonal Lyapunov vectors. Phys. Rev. E 82, 046204 (2010)

    Article  MathSciNet  Google Scholar 

  • Yang, H.-L., Takeuchi, K.A., Ginelli, F., Chaté, H., Radons, G.: Hyperbolicity and the effective dimension of spatially-extended dissipative systems. Phys. Rev. Lett. 102, 074102 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to the results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013 under grant agreement No. HEALTH-F2-2009-241526, EUTrigTreat. P.V.K. acknowledges support from RFBR-DFG under Grant No. 08-02-91963.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Kuptsov.

Additional information

Communicated by P. Newton.

Appendix: Pseudocode for the LU Method

Appendix: Pseudocode for the LU Method

Input: nclv, number of computed covariant Lyapunov vectors; nstore, number of trajectory points where the covariant vectors are computed; m, dimension of the tangent space; dt, time interval between orthogonalizations (normally, a multiple of time discretization step); nspend_att, nspend_fwd, nspend_bkw,steps to converge to the attractor, forward and backward vectors, respectively.

Subroutines: solve_bas(), solving of the basic system; solve_lin_fwd(), solve_lin_trp(), action of forward and transposed propagators, respectively (see Sect. 3); null_vect(), computing a null vector (in the case of multiple solutions, an arbitrary null vector can be taken); orthog(), QR-orthogonalization (matrix \(\mbox {\boldmath {$\mathrm {R}$}}\) is abandoned); transpose(), transpose of a matrix; random(), generate random matrix or vector; A.B, multiplication of matrices A and B.

Result: Gamma, array of nstore matrices m by nclv, whose columns are the covariant Lyapunov vectors

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuptsov, P.V., Parlitz, U. Theory and Computation of Covariant Lyapunov Vectors. J Nonlinear Sci 22, 727–762 (2012). https://doi.org/10.1007/s00332-012-9126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9126-5

Keywords

Navigation