Skip to main content
Log in

Noise in oscillators: a review of state space decomposition approaches

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We review the state space decomposition techniques for the assessment of the noise properties of autonomous oscillators, a topic of great practical and theoretical importance for many applications in many different fields, from electronics, to optics, to biology. After presenting a rigorous definition of phase, given in terms of the autonomous system isochrons, we provide a generalized projection technique that allows to decompose the oscillator fluctuations in terms of phase and amplitude noise, pointing out that the very definition of phase (and orbital) deviations depends of the base chosen to define the aforementioned projection. After reviewing the most advanced theories for phase noise, based on the use of the Floquet basis and of the reduction of the projected model by neglecting the orbital fluctuations, we discuss the intricacies of the phase reduction process pointing out the presence of possible variations of the noisy oscillator frequency due to amplitude-related effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Notice that in [16] the Fokker–Planck equation is derived for both the Stratonovich and Itô interpretations: since we make use of Stratonovich calculus in (33), equation (21) in [16] should be used with \(\lambda =1\).

  2. Since the LTV system is real, if a complex Floquet exponent exists, its complex conjugate should also be part of the Floquet exponents set.

References

  1. Pankratz, E., Sánchez-Sinencio, E.: Survey of integrated-circuit-oscillator phase-noise analysis. Int. J. Circuit Theory Appl. (2013). doi:10.1002/cta.1890

  2. Sancho, S., Suarez, A., Ramirez, F.: General phase-noise analysis from the variance of the phase deviation. IEEE Trans. Microw. Theory Tech. 61(1), 472–481 (2013). doi:10.1109/TMTT.2012.2229713

    Article  Google Scholar 

  3. Maffezzoni, P., Pepe, F., Bonfanti, A.: A unified method for the analysis of phase and amplitude noise in electrical oscillators. IEEE Trans. Microw. Theory Tech. 61(9), 3277–3284 (2013). doi:10.1109/TMTT.2013.2273765

    Article  Google Scholar 

  4. Maffezzoni, P., Zhang, Z., Daniel, L.: A study of deterministic jitter in crystal oscillators. IEEE Trans. Circuit Syst. I, Regul. Pap. 61(4), 1044–1054 (2014). doi:10.1109/TCSI.2013.2286028

    Article  Google Scholar 

  5. Wedgwood, K., Lin, K., Thul, R., Coomber, S.: Phase-amplitude descriptions of neural oscillator models. J. Math. Neurosci. (2013). doi:10.1186/2190-8567-3-2

  6. Winfree, A.: The Geometry of Biological Time, 2nd edn. Springer, New York (2000)

    Google Scholar 

  7. Bonani, F., Gilli, M.: Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans. Circuit Syst. I, Fundam. Theory Appl. 46(8), 881–890 (1999). doi:10.1109/81.780370

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaertner, F.X.: Analysis of white and \(f^{-\alpha }\) noise in oscillators. Int. J. Circuit Theory Appl. 18, 485–519 (1990). doi: 10.1002/cta.4490180505

    Article  MATH  Google Scholar 

  9. Traversa, F.L., Bonani, F.: Asymptotic stochastic characterization of phase and amplitude noise in free-running oscillators. Fluct. Noise Lett. 10(2), 207–221 (2011). doi:10.1142/S021947751100048X

    Article  MATH  Google Scholar 

  10. Traversa, F.L., Bonani, F.: Oscillator noise: a nonlinear perturbative theory including orbital fluctuations and phase-orbital correlation. IEEE Trans. Circuit Syst. I, Regul. Pap. 58(10), 2485–2497 (2011). doi:10.1109/TCSI.2011.2123531

    Article  MathSciNet  Google Scholar 

  11. Bonnin, M., Corinto, F., Gilli, M.: Phase space decomposition for phase noise and synchronization analysis of planar nonlinear oscillators. IEEE Trans. Circuit Syst. II, Express Briefs 59(10), 638–642 (2012). doi:10.1109/TCSII.2012.2213363

    Article  Google Scholar 

  12. Bonnin, M., Corinto, F., Gilli, M.: Phase noise, and phase models; recent developments, new insights and open problems. Nonlinear Theory Appl. IEICE 2(3), 1101–1114 (2011). doi:10.1588/nolta.2.1101

    Google Scholar 

  13. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  14. Kundert, K., Sangiovanni-Vincentelli, A., White, J.: Steady-State Methods for Simulating Analog and Microwave Circuits. Kluwer Academic Publisher, Boston (1990)

    Book  MATH  Google Scholar 

  15. Bonani, F., Ghione, G.: Noise in Semiconductor Devices. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  16. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Trans. Circuit Syst. I, Fundam. Theory Appl. 57(5), 655–674 (2000). doi:10.1109/81.847872

    Article  Google Scholar 

  17. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidelberg (2003)

    Book  Google Scholar 

  18. Bonnin, M., Corinto, F.: Phase noise and noise induced frequency shift in stochastic nonlinear oscillators. IEEE Trans. Circuit Syst. I, Regul. Pap. 60(8), 2104–2115 (2013). doi:10.1109/TCSI.2013.2239131

    Article  MathSciNet  Google Scholar 

  19. Gardiner, C.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  20. Guckenheimer, J.: Isochrons and phaseless sets. J. Math. Biol. 1(3), 259–273 (1975). doi:10.1007/BF01273747

    Article  MATH  MathSciNet  Google Scholar 

  21. Djurhuus, T., Krozer, V., Vidkjaer, J., Johansen, T.: Oscillator phase noise: a geometrical approach. IEEE Trans. Circuit Syst. I, Regul. Pap. 56(7), 1373–1382 (2009). doi:10.1109/TCSI.2008.2006211

    Article  MathSciNet  Google Scholar 

  22. Suvak, O., Demir, A.: On phase models for oscillators. IEEE Trans. Comput. Aided Des. Integr. Circuit Syst. 30(7), 972–985 (2011). doi:10.1109/TCAD.2011.2113630

    Article  Google Scholar 

  23. Farkas, M.: Periodic Motions. Springer, New York (1994)

    Book  MATH  Google Scholar 

  24. Hajimiri, A., Lee, T.: The Design of Low Noise Oscillators. Kluwer Academic Publisher, Dordrecht (1999)

    Google Scholar 

  25. Risken, H.: The Fokker-Planck equation. Methods of solution and applications, 2nd edn. Springer, Berlin (1986)

    Google Scholar 

  26. Lax, M.: Classical noise V. Noise in self-sustained oscillators. Phys. Rev. 160, 290–307 (1967). doi:10.1103/PhysRev.160.290

    Article  Google Scholar 

  27. Kaertner, F.X.: Determination of the correlation spectrum of oscillators with low noise. IEEE Trans. Microw. Theory Tech. 37(1), 90–101 (1989). doi:10.1109/22.20024

    Article  Google Scholar 

  28. Demir, A.: Phase noise and timing jitter in oscillators with colored-noise sources. IEEE Trans. Circuit Syst. I, Fundam. Theory Appl. 49(12), 1782–1791 (2002). doi:10.1109/TCSI.2002.805707

    Article  Google Scholar 

  29. Yoshimura, K., Arai, K.: Phase reduction of stochastic limit cycle oscillators. Phys. Rev. Lett. 101, 154101 (2008). doi:10.1103/PhysRevLett.101.154101

    Article  Google Scholar 

  30. Teramae, J.N., Nakao, H., Bard Ermentrout, G.: Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys. Rev. Lett. 102, 194102 (2009). doi:10.1103/PhysRevLett.102.194102

    Article  Google Scholar 

  31. Goldobin, D., Teramae, J.N., Nakao, H., Bard Ermentrout, G.: Dynamics of limit-cycle oscillators subject to general noise. Phys. Rev. Lett. 105, 154101 (2010). doi:10.1103/PhysRevLett.105.154101

    Article  Google Scholar 

  32. Hajimiri, A., Lee, T.: A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuit 33(2), 179–194 (1998). doi:10.1109/4.658619

    Article  Google Scholar 

  33. Srivastava, S., Roychowdhury, J.: Analytical equations for nonlinear phase errors and jitter in ring oscillators. IEEE Trans. Circuit Syst. I, Regul. Pap. 54(10), 2321–2329 (2007)

    Article  MathSciNet  Google Scholar 

  34. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  35. Coram, G.: A simple 2-D oscillator to determine the correct decomposition of perturbations into amplitude and phase noise. IEEE Trans. Circuit Syst. I, Fundam. Theory Appl. 48(7), 896–898 (2001). doi:10.1109/81.933331

    Article  MATH  MathSciNet  Google Scholar 

  36. Bonnin, M., Corinto, F.: Influence of noise on the phase and amplitude of second-order oscillators. IEEE Trans. Circuit Syst. II, Express. Briefs 61(3), 158–162 (2014). doi:10.1109/TCSII.2013.2296122

    Article  Google Scholar 

  37. Demir, A.: Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations. Int. J. Circuit Theory Appl. 28, 163–185 (2000)

    Article  MATH  Google Scholar 

  38. Traversa, F.L., Bonani, F., Donati Guerrieri, S.: A frequency-domain approach to the analysis of stability and bifurcations in nonlinear systems described by differential-algebraic equations. Int. J. Circuit Theory Appl. 36(4), 421–439 (2008). doi:10.1002/cta.440

    Article  MATH  Google Scholar 

  39. Cappelluti, F., Traversa, F.L., Bonani, F., Donati Guerrieri, S., Ghione, G.: Large-signal stability of symmetric multi-branch power amplifiers exploiting Floquet analysis. IEEE Trans. Microw. Theory Tech. 61(4), 1580–1587 (2013). doi:10.1109/TMTT.2013.2248017

    Article  Google Scholar 

  40. Guckenheimer, J., Meloon, B.: Computing periodic orbits and their bifurcations with automatic differentiation. SIAM J. Sci. Comput. 22, 951–985 (2000). doi:10.1137/S1064827599359278

  41. Lust, K.: Improved numerical Floquet multipliers. Int. J. Bifurc. Chaos 11(9), 2389–2410 (2001). doi:10.1142/S0218127401003486

    Article  MATH  MathSciNet  Google Scholar 

  42. Demir, A., Roychowdhury, J.: A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications. IEEE Trans. Comput. Aided Des. Integr. Circuit Syst. 22(2), 188–197 (2003). doi:10.1109/TCAD.2002.806599

    Article  Google Scholar 

  43. Brambilla, A., Storti Gajani, G.: Computation of all Floquet eigenfunctions in autonomous circuits. Int. J. Circuit Theory Appl. 36, 717–737 (2008). doi:10.1002/cta.457

    Article  MATH  Google Scholar 

  44. Brambilla, A., Gruosso, G., Storti Gajani, G.: Determination of Floquet exponents for small-signal analysis of nonlinear periodic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst 28(3), 447–451 (2009). doi:10.1109/TCAD.2009.2013285

  45. Traversa, F.L., Bonani, F.: Frequency domain evaluation of the adjoint Floquet eigenvectors for oscillator noise characterization. IET Circuits Devices Syst. 5(1), 46–51 (2011). doi:10.1049/iet-cds.2010.0138

  46. Traversa, F.L., Bonani, F.: Improved harmonic balance implementation of Floquet analysis for nonlinear circuit simulation. AEÜ - Int. J. Electron. Commun. 66(5), 357–363 (2012). doi:10.1016/j.aeue.2011.09.002

    Article  Google Scholar 

  47. Traversa, F.L., Bonani, F.: Selective determination of Floquet quantities for the efficient assessment of limit cycle stability and of oscillator noise. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(2), 313–317 (2013). doi:10.1109/TCAD.2012.2214480

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministry of Foreign Affairs (Italy) “Con il contributo del Ministero degli Affari Esteri, Direzione Generale per la Promozione del Sistema Paese.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bonani.

Appendix 1: Floquet theory basics

Appendix 1: Floquet theory basics

Floquet theory forms the basis for the most advanced oscillator noise theories. Details can be found in [23], while [37] deals with the extension of the classical Floquet theory of ODEs to DAEs.

Let us consider a LTV homogeneous ODE of size \(n\)

$$\begin{aligned} \frac{\displaystyle \text {d}\mathbf {y}}{\displaystyle \text {d}t}=\mathbf {A}(t)\mathbf {y}(t) \end{aligned}$$
(58)

where \(\mathbf {A}(t)=\mathbf {A}(t+T)\) is a \(T\)-periodic matrix of size \(n\). Given the initial condition \(\mathbf {y}(0)=\mathbf {y}_0\), Floquet theorem states that the solution of (58) reads

$$\begin{aligned} \mathbf {y}(t)=\mathbf {S}(t,0)\mathbf {y}_0 \end{aligned}$$
(59)

where \(\mathbf {S}(t,s)\), the state transition matrix of the LTV system, is expressed as

$$\begin{aligned} \mathbf {S}(t,s)=\mathbf {U}(t)\mathbf {D}(t-s)\mathbf {V}(s), \end{aligned}$$
(60)

where \(\mathbf {U}\) and \(\mathbf {V}\) are two \(T\)-periodic invertible square matrices of size \(n\) such that \(\mathbf {U}(t)=\mathbf {V}^{-1}(t)\), while matrix \(\mathbf {D}(t)\) is a diagonal matrix:

$$\begin{aligned} \mathbf {D}(t)={\mathrm{\text {diag} }\left\{ \exp (\mu _1 t), \dots , \exp (\mu _n t) \right\} }. \end{aligned}$$
(61)

The \(n\) complex numbersFootnote 2 \(\mu _i\) are the Floquet exponents (FEs) of (58), while \(\lambda _i=\exp (\mu _i T)\) are the corresponding Floquet multipliers (FMs). According to the FM definition, for each FM \(\lambda _i\) an infinite set of FEs exists, namely \(\mu _i+{\text {i}}k 2\pi \) where \(k\) is an integer number: this splitting of the FEs is important when the exponents are calculated by means of frequency domain techniques, such as Harmonic Balance [38].

Denoting with \(\mathbf {u}_i(t)\) (resp. \(\mathbf {v}_i^{\text {T}}(t)\)) the \(i\)th column (resp. row) of \(\mathbf {U}(t)\) (resp. \(\mathbf {V}(t)\)), the two sets \(\{\mathbf {u}_i(t)\}\) and \(\{\mathbf {v}_i(t)\}\) both span the entire \(\mathbb {R}^n\), and form a bi-orthogonal basis (see (19)). Furthermore:

  • \(\mathbf {u}_i(t)\exp (\mu _i t)\) is a solution of (58) with initial condition \(\mathbf {u}_i(0)\). For this reason, \(\mathbf {u}_i(t)\) is the direct Floquet eigenvector associated to the \(\mu _i\) FE of (58);

  • \(\mathbf {v}_i(t)\exp (-\mu _i t)\) is a solution of the adjoint system associated to (58), i.e.

    $$\begin{aligned} \frac{\displaystyle \text {d}\mathbf {z}}{\displaystyle \text {d}t}=-\mathbf {A}^{\text {T}}(t)\mathbf {z}(t), \end{aligned}$$
    (62)

    with initial condition \(\mathbf {v}_i(0)\). Correspondingly, \(\mathbf {v}_i(t)\) is the adjoint Floquet eigenvector associated to \(\mu _i\).

Considering the limit cycle \(\mathbf {x}_{\text {S}}(t)\) solution of (1), and the LTV system defined by a linearization of (1), i.e.

$$\begin{aligned} \mathbf {A}(t)=\left. \nabla _\mathbf {x}\mathbf {f}(x)\right| _{\mathbf {x}_{\text {S}}(t)}, \end{aligned}$$
(63)

it follows

$$\begin{aligned} \frac{\displaystyle \text {d}}{\displaystyle \text {d}t} \frac{\displaystyle \text {d}\mathbf {x}_{\text {S}}}{\displaystyle \text {d}t}=\frac{\displaystyle \text {d}}{\displaystyle \text {d}t} \mathbf {f}(\mathbf {x}_{\text {S}}(t))=\mathbf {A}(t) \frac{\displaystyle \text {d}\mathbf {x}_{\text {S}}}{\displaystyle \text {d}t}. \end{aligned}$$
(64)

Therefore, for the LTV system associated to an autonomous circuit, \(0\) is always a FE (or, equivalently, \(+1\) is always a FM) associated to the direct Floquet eigenvector \(\text {d}\mathbf {x}_s/\text {d}t\). With no loss of generality, we assume \(\mu _1=0\) and \(\mathbf {u}_1(t)=\text {d}\mathbf {x}_s/\text {d}t\).

Due to the exponential dependence on \(\mu _i\) of the solution of (58), an oscillator has an asymptotically stable orbit if and only if all the FEs \(\mu _i\) (\(i=2,\dots ,n\)) have negative real part, or equivalently all the FMs \(\lambda _i\) (\(i=2,\dots ,n\)) have magnitude lower than 1.

The computation of the FEs and eigenvectors (direct and adjoint) is a fundamental step for Floquet-based oscillator noise analysis. Specifically, the adjoint Floquet eigenvector \(\mathbf {v}_1(t)\), associated to \(\mu _1=0\), is the so-called perturbation projection vector that plays the man role in the assessment of phase noise [16, 21, 22]. Due to their importance for oscillator noise and for the assessment of the stability of limit cycles [39], the Floquet quantities have been the object of research for several years. In most of the cases, the computation is perfomed in time domain [4043]. However, efficient algorithms for the frequemcy domain evaluation, based on the harmonic balance technique, are proposed in [38, 42, 4447].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traversa, F.L., Bonnin, M., Corinto, F. et al. Noise in oscillators: a review of state space decomposition approaches. J Comput Electron 14, 51–61 (2015). https://doi.org/10.1007/s10825-014-0651-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0651-3

Keywords

Navigation