Skip to main content

Genetics and Genomic Approaches for Disease Resistance in Brassicas

  • Chapter
  • First Online:
Brassica Improvement
  • 370 Accesses

Abstract

Genetics of plant disease, as explained by Flor, is based on the hypothesis that resistance genes confer resistance against pathogens that express matching avirulence genes. Avirulence genes of the pathogen encode a protein product that is conditionally recognized directly or indirectly only by those plants that contain the complementary resistance gene. At the gene level, plant resistance to pathogens can be divided into qualitative and quantitative disease resistance, conditioned by major gene(s) and multiple genes with minor effects, respectively. The genomic approaches to resistance gene initially started with genomic sequencing of Arabidopsis and rice. Genes containing a nucleotide-binding site (NBS) constitute around 80% of the plant resistance gene families. Monocot plants possess non-TIR type while both TIR and non-TIR types of NBS genes are the characteristics of resistance gene in dicots. A set of NBS-encoding genes at the genome level has been identified in more than 30 angiosperms. The number of identified NBS-encoding genes ranges from 200 in Arabidopsis thaliana to 581 in Oryza sativa. In Brassica, the whole-genome gene expression and methylation studies have been proved to be very useful in the direction of uncovering the structure, function, and evolutionary origin of resistance genes. A number of NBS-encoding genes have been identified and sequenced in Brassica species for various important diseases, which will provide a base for candidate gene approach for cloning the quantitative trait loci for disease resistance. A genome-wide comparison of putatively functional NBS-encoding genes in B. napus, B. rapa, and B. oleracea identified 464, 202, and 146 putatively functional NBS-encoding genes, respectively, with genes unevenly distributed in several clusters. As our knowledge about the molecular mechanisms of the plant immunity signaling pathway and the role of resistance genes will amplify, we will gain more effective and durable strategies to overcome pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamery S, Tirnaz S, Bayer P, Tollenaere R, Chaloub B, Edwards D et al (2017) Genome-wide identification and comparative analysis of NBS-LRR resistance genes in Brassica napus. Crop Pasture Sci 69(1):79–93. https://doi.org/10.1071/CP17214

    Article  CAS  Google Scholar 

  • Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1):5–21

    Article  CAS  Google Scholar 

  • Arora H, Padmaja KL, Paritosh K, Mukhi N, Tewari AK, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2019) BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor Appl Genet 132:2223. https://doi.org/10.1007/s00122-019-03350-z

    Article  CAS  PubMed  Google Scholar 

  • Bayer PE, Hurgobin B, Golicz AA, Chan C-KK, Yuan Y, Lee H et al (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15(12):1602–1610. https://doi.org/10.1111/pbi.12742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biffen RH (1905) Mendel’s laws of inheritance and wheat breeding. J Agric Sci 1:4–48

    Article  Google Scholar 

  • Carlier JD, Alabaça CA, Coelho PS, Monteiro AA, Leitão JM (2012) The downy mildew resistance locus Pp523 is located on chromosome C8 of Brassica oleracea L. Plant Breed 131:170–175. https://doi.org/10.1111/j.1439-0523.2011.01904.x

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345:950–953. https://doi.org/10.1126/science.1253435

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  Google Scholar 

  • Diederichsen E, Frauen M, Linders EG, Hatakeyama K, Hirai M (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281. https://doi.org/10.1007/s00344-009-9100-0

    Article  CAS  Google Scholar 

  • Farinhó M, Coelho P, Carlier J, Svetleva D, Monteiro A, Leitão J (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor Appl Genet 109:1392–1398. https://doi.org/10.1007/s00122-004-1747-0

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Fu Y, Zhang Y, Mason AS, Lin B, Zhang D, Yu H, Fu D (2019) NBS-encoding genes in Brassica napus evolved rapidly after allopolyploidization and co-localize with known disease resistance loci. Front Plant Sci 10:26. https://doi.org/10.3389/fpls.2019.00026

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg H, Atri C, Sandhu PS, Kaur B, Renton M, Banga SK et al (2010) High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Res 117:51–58. https://doi.org/10.1016/j.fcr.2010.01.013

    Article  Google Scholar 

  • Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390. https://doi.org/10.1038/ncomms13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD (2012) Identification and localization of the NB-LRR gene family within the potato genome. BMC Genomics 13(1):75

    Article  CAS  Google Scholar 

  • Li X, Cheng Y, Ma W, Zhao Y, Jiang H, Zhang M (2010) Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Syst Evol 289(1–2):101110

    Google Scholar 

  • Li J, Zhao Z, Hayward A, Cheng H, Fu D (2015) Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus. Euphytica 205:483–489

    Article  CAS  Google Scholar 

  • Li P, Quan X, Jia G, Xiao J, Cloutier S, You FM (2016) RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 17:852. https://doi.org/10.1186/s12864-016-3197-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Zhang Y, Kuang H, Chen J (2013) Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genomics 14:335. https://doi.org/10.1186/1471-2164-14-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Latunde-Dada AO, Hall AM, Fitt BDL (2014) Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’. Eur J Plant Pathol 140:841–857. https://doi.org/10.1007/s10658-014-0513-7

    Article  Google Scholar 

  • McDowell JM, Williams SG, Funderburg NT, Eulgem T, Dangl JL (2005) Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana. Mol Plant Microbe Interact 18:1226–1234. https://doi.org/10.1094/MPMI-18-1226

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q, Li J et al (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica 177:393–399. https://doi.org/10.1007/s10681-010-0274-0

    Article  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO et al (2013) Identification of genomic regions involved in resistance against Sclerotiniasclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556. https://doi.org/10.1007/s00122-012-2000-x

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834

    Article  CAS  Google Scholar 

  • Michelmore R (2000) Genomic approaches to plant disease resistance. Curr Opin Plant Biol 3:125–131

    Article  CAS  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109(7):1434–1447

    Article  CAS  Google Scholar 

  • Mun JH, Yu HJ, Park S, Park BS (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Gen Genomics 282(6):617–631

    Article  CAS  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    Article  CAS  Google Scholar 

  • Panjabi P, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasms of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145

    Article  Google Scholar 

  • Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77. https://doi.org/10.1186/gb-2014-15-6-r77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Gen Genomics 281(6):609–626

    Article  CAS  Google Scholar 

  • Rahman H, Shakir A, Jakir Hasan M (2011) Breeding for clubroot resistant spring canola (Brassica napus L.) for the Canadian prairies: can the European winter canola cv. Mendel be used as a source of resistance? Can J Plant Sci 91:447–458. https://doi.org/10.4141/cjps10073

    Article  Google Scholar 

  • Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan AK, Kaur J (2017) Genetic architecture of resistance to Alternaria brassicae in Arabidopsis thaliana: QTL mapping reveals two major resistance-conferring loci. Front Plant Sci 8:260. https://doi.org/10.3389/fpls.2017.00260

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Sharma SR, Kalia P, Deshmukh R, Kumar V, Sharma P et al (2012) Molecular mapping of the downy mildew resistance gene Ppa3 in cauliflower (Brassica oleracea var. botrytis L.). J Hortic Sci Biotechnol 87:137–143. https://doi.org/10.1080/14620316.2012.11512844

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S et al (2011) Brassica rapa genome sequencing project consortium. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039. https://doi.org/10.1038/ng.919

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Li F, Xu K, Gao G, Chen B, Yan G et al (2014) Assessing and broadening genetic diversity of a rapeseed germplasm collection. Breed Sci 64:321–330. https://doi.org/10.1270/jsbbs.64.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X et al (2016) Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep 6:19007. https://doi.org/10.1038/srep19007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280(3):187–198

    Article  CAS  Google Scholar 

  • Yang S, Li J, Zhang X, Zhang Q, Huang J, Chen JQ et al (2013) Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. Proc Natl Acad Sci U S A 110:18572–18577. https://doi.org/10.1073/pnas.1318211110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, et al (2014) Genomewide comparative analysis ofNBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics 15:3

    Google Scholar 

  • Yu S, Su T, Zhi S, Zhang F, Wang W, Zhang D, et al (2016) Construction of a sequence-based bin map and mapping of QTLs for downy mildew resistance at four developmental stages in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 36:1–12

    Google Scholar 

  • Zhang H, Feng J, Zhang S, Zhang S, Li F, Strelkov SE et al (2015) Resistance to Plasmodiophora brassicae in Brassica rapa and Brassica juncea genotypes from China. Plant Dis 99:776–779. https://doi.org/10.1094/PDIS-08-14-0863-RE

    Article  PubMed  Google Scholar 

  • Zhang X, Peng G, Parks P, Hu B, Li Q, Jiang L et al (2016) Identifying seedling and adult plant resistance of Chinese Brassica napus germplasm to Leptosphaeria maculans. Plant Pathol 66:752–762. https://doi.org/10.1111/ppa.12626

    Article  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genomewide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271(4):402–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priyamedha, Ram, B., Kumar, A., Sharma, H.K., Singh, V.V. (2020). Genetics and Genomic Approaches for Disease Resistance in Brassicas. In: Wani, S., Thakur, A., Jeshima Khan, Y. (eds) Brassica Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-34694-2_8

Download citation

Publish with us

Policies and ethics