Skip to main content

Traditional Imaging: Plain X-Rays, Three-Dimensional CT, and MR Imaging in Development Dysplasia of the Hip

  • Chapter
  • First Online:
Hip Dysplasia

Abstract

Hip dysplasia is a long known cause for hip pain and the development of osteoarthritis in mostly young and female patients. Radiographic evaluation is crucial and should be performed using standardized pelvic radiographs.

Pelvic AP radiographs provide an overview and are the primary method for diagnosis of hip dysplasia. Several radiographic factors (pre- and postoperatively) that can predict the outcome after periacetabular osteotomy (PAO) have been identified and validated on conventional radiographs.

For evaluation of the cartilage and labral status, MR imaging is crucial. Early signs of osteoarthritis and further signs of instability can be evaluated.

3D CT scans can help to assess anterior or posterior coverage of the femoral head, exact morphology of the acetabulum and simulation of PAO. In addition, 3D CT scan can help to virtually plan the amount of correction during PAO and potential concomitant correction of a cam-deformity avoiding postoperative FAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ziegler J, Thielemann F, Mayer-Athenstaedt C, Günther K-P. The natural history of developmental dysplasia of the hip. A meta-analysis of the published literature. Orthopade. 2008;37(6):515–6, 518–24

    Article  CAS  PubMed  Google Scholar 

  2. Steppacher SD, Tannast M, Ganz R, Siebenrock KA. Mean 20-year followup of Bernese periacetabular osteotomy. Clin Orthop Relat Res. 2008;466(7):1633–44.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lerch TD, Steppacher SD, Liechti EF, Siebenrock KA, Tannast M. Bernese periacetabular osteotomy: indications, technique and results 30 years after the first description. Orthopade. 2016;45(8):687–94.

    Article  CAS  PubMed  Google Scholar 

  4. Lerch TD, Steppacher SD, Liechti EF, Tannast M, Siebenrock KA. One-third of hips after periacetabular osteotomy survive 30 years with good clinical results, no progression of arthritis, or conversion to THA. Clin Orthop Relat Res. 2017;475(4):1154–68.

    Article  PubMed  Google Scholar 

  5. Ganz R, Klaue K, Vinh TS, Mast JW. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Clin Orthop Relat Res. 1988;232:26–36.

    Google Scholar 

  6. Albers CE, Steppacher SD, Ganz R, Tannast M, Siebenrock KA. Impingement adversely affects 10-year survivorship after periacetabular osteotomy for DDH. Clin Orthop Relat Res. 2013;471(5):1602–14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hartig-Andreasen C, Troelsen A, Thillemann TM, Gelineck J, Søballe K. Risk factors for the need of hip arthroscopy following periacetabular osteotomy. J Hip Preserv Surg. 2015;2(4):374–84.

    PubMed  PubMed Central  Google Scholar 

  8. Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–52.

    Article  PubMed  Google Scholar 

  9. Clohisy JC, Carlisle JC, Beaulé PE, Kim Y-J, Trousdale RT, Sierra RJ, et al. A systematic approach to the plain radiographic evaluation of the young adult hip. J Bone Joint Surg Am. 2008;90(Suppl 4):47–66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lauenstein C. Nachweis der ‘Kocherschen Verbiegung’ des Schenkelhalses bei der Coxa vara durch Röntgenstrahlen. Fortschr Röntgenstr. 1901;4:61–4.

    Google Scholar 

  11. Dunn DM. Anteversion of the neck of the femur; a method of measurement. J Bone Joint Surg Br. 1952;34-B(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  12. Rippstein J. Determination of the antetorsion of the femur neck by means of two x-ray pictures. Z Orthop Ihre Grenzgeb. 1955;86(3):345–60.

    CAS  PubMed  Google Scholar 

  13. Lequesne M, de SEZE. False profile of the pelvis. A new radiographic incidence for the study of the hip. Its use in dysplasias and different coxopathies. Rev Rhum Mal Osteoartic. 1961;28:643–52.

    Google Scholar 

  14. Steppacher SD, Albers CE, Tannast M, Siebenrock KA. Plain radiographic evaluation of the hip. In: Nho SJ, Leunig M, Larson CM, Bedi A, Kelly BT, editors. Hip arthroscopy and hip joint preservation surgery [Internet]. New York: Springer; 2015. p. 33–51. [zitiert 2. March 2019]. Verfügbar unter. https://doi.org/10.1007/978-1-4614-6965-0_3.

    Chapter  Google Scholar 

  15. Büchler L, Schwab JM, Whitlock PW, Beck M, Tannast M. Intraoperative evaluation of acetabular morphology in hip arthroscopy comparing standard radiography versus fluoroscopy: a cadaver study. Arthroscopy. 2016;32(6):1030–7.

    Article  PubMed  Google Scholar 

  16. Tannast M, Siebenrock KA. Imaging: plain radiographs. In: Sekiya JK, Safran MR, Ranawat A, Leunig M, editors. Techniques in hip arthroscopy and joint preservation surgery. 1st ed. Philadelphia: Elsevier Saunders; 2010. p. 23–34.

    Google Scholar 

  17. Burckhardt K. Theoretical study to the sub-project ‘Interactive software for 2D and 3D standardization of pelvic radiographs and CT-scans for accurate evaluation of hip joint morphology’ under CO-ME Project 4. Swiss Federal Institute of Technology. 2003;Report no. 267.

    Google Scholar 

  18. Tannast M, Zheng G, Anderegg C, Burckhardt K, Langlotz F, Ganz R, et al. Tilt and rotation correction of acetabular version on pelvic radiographs. Clin Orthop Relat Res. 2005;438:182–90.

    Article  CAS  PubMed  Google Scholar 

  19. Tannast M, Murphy SB, Langlotz F, Anderson SE, Siebenrock KA. Estimation of pelvic tilt on anteroposterior X-rays – a comparison of six parameters. Skelet Radiol. 2006;35(3):149–55.

    Article  CAS  Google Scholar 

  20. Siebenrock KA, Kalbermatten DF, Ganz R. Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res. 2003;407:241–8.

    Article  Google Scholar 

  21. Eijer H, Leunig M, Mahomed MN, Ganz R. Cross-table lateral radiographs for screening of anterior femoral head-neck offset in patients with femoroacetabular impingement. Hip Int. 2001;11(1):37–41.

    Article  Google Scholar 

  22. Wissing H, Buddenbrock B. Determining rotational errors of the femur by axial computerized tomography in comparison with clinical and conventional radiologic determination. Unfallchirurgie. 1993;19(3):145–57.

    Article  CAS  PubMed  Google Scholar 

  23. Young M, Dempsey M, Rocha ADL, Podeszwa DA. The cross-table lateral radiograph results in a significantly increased effective radiation dose compared with the Dunn and single frog lateral radiographs. J Pediatr Orthop. 2015;35(2):157–61.

    Article  PubMed  Google Scholar 

  24. Meyer DC, Beck M, Ellis T, Ganz R, Leunig M. Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res. 2006;445:181–5.

    PubMed  Google Scholar 

  25. Tannast M, Hanke MS, Zheng G, Steppacher SD, Siebenrock KA. What are the radiographic reference values for acetabular under- and overcoverage? Clin Orthop Relat Res. 2015;473(4):1234–46.

    Article  PubMed  Google Scholar 

  26. Tannast M, Fritsch S, Zheng G, Siebenrock KA, Steppacher SD. Which radiographic hip parameters do not have to be corrected for pelvic rotation and tilt? Clin Orthop Relat Res. 2015;473(4):1255–66. https://doi.org/10.1007/s11999-014-3936-8.

    Article  PubMed  Google Scholar 

  27. Tönnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81(12):1747–70.

    Article  PubMed  Google Scholar 

  28. Tannast M, Albers CE, Steppacher SD, Siebenrock KA. Hip pain in the young adult. In: Bentley G, editor. European instructional lectures, vol. 11. New York: Springer; 2011.

    Google Scholar 

  29. Siebenrock KA, Kistler L, Schwab JM, Büchler L, Tannast M. The acetabular wall index for assessing anteroposterior femoral head coverage in symptomatic patients. Clin Orthop Relat Res. 2012;470(12):3355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nepple JJ, Brophy RH, Matava MJ, Wright RW, Clohisy JC. Radiographic findings of femoroacetabular impingement in National Football League Combine athletes undergoing radiographs for previous hip or groin pain. Arthroscopy. 2012;28(10):1396–403.

    Article  PubMed  Google Scholar 

  31. Schmaranzer E, Lerch TD, Steppacher SD, Tannast M. Röntgendiagnostik der Hüfte [in german]. Diagnostik des Hüftgelenkes – AGA. 2017;26:20–32.

    Google Scholar 

  32. Alexander C. The aetiology of primary protrusio acetabuli. Br J Radiol. 1965;38:567–80.

    Article  CAS  PubMed  Google Scholar 

  33. Gilmour J. Adolescent deformities of the acetabulum an investigation into the nature of protrusio acetabuli. Br J Surg. 1939;26(104):670–99.

    Article  Google Scholar 

  34. Jamali AA, Mladenov K, Meyer DC, Martinez A, Beck M, Ganz R, et al. Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the “cross-over-sign”. J Orthop Res. 2007;25(6):758–65.

    Article  PubMed  Google Scholar 

  35. Zaltz I, Kelly BT, Hetsroni I, Bedi A. The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res. 2013;471(8):2463–70.

    Article  PubMed  Google Scholar 

  36. Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br. 1999;81(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kalberer F, Sierra RJ, Madan SS, Ganz R, Leunig M. Ischial spine projection into the pelvis: a new sign for acetabular retroversion. Clin Orthop Relat Res. 2008;466(3):677–83.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Steppacher SD, Lerch TD, Gharanizadeh K, Liechti EF, Werlen SF, Puls M, et al. Size and shape of the lunate surface in different types of pincer impingement: theoretical implications for surgical therapy. Osteoarthr Cartil. 2014;22(7):951–8.

    Article  CAS  Google Scholar 

  39. Steppacher SD, Tannast M, Werlen S, Siebenrock KA. Femoral morphology differs between deficient and excessive acetabular coverage. Clin Orthop Relat Res. 2008;466(4):782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84(4):556–60.

    Article  PubMed  Google Scholar 

  41. Siebenrock KA, Steppacher SD, Haefeli PC, Schwab JM, Tannast M. Valgus hip with high antetorsion causes pain through posterior extraarticular FAI. Clin Orthop Relat Res. 2013;471(12):3774–80.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoaglund FT, Low WD. Anatomy of the femoral neck and head, with comparative data from Caucasians and Hong Kong Chinese. Clin Orthop Relat Res. 1980;152:10–6.

    Google Scholar 

  43. Toogood PA, Skalak A, Cooperman DR. Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res. 2009;467(4):876–85.

    Article  PubMed  Google Scholar 

  44. Beltran LS, Rosenberg ZS, Mayo JD, De Tuesta MD, Martin O, Neto LP, et al. Imaging evaluation of developmental hip dysplasia in the young adult. AJR Am J Roentgenol. 2013;200(5):1077–88.

    Article  PubMed  Google Scholar 

  45. Rhee P, Woodcock J, Clohisy J, Millis M, Sucato D, Beaulé P, et al. The Shenton line in the diagnosis of acetabular dysplasia in the skeletally mature patient. J Bone Joint Surg. 2011;93(Supplement_2):35–9.

    Article  PubMed  Google Scholar 

  46. Wyatt M, Weidner J, Pfluger D, Beck M. The Femoro-Epiphyseal Acetabular Roof (FEAR) index: a new measurement associated with instability in borderline hip dysplasia? Clin Orthop Relat Res. 2017;475(3):861–9.

    Article  PubMed  Google Scholar 

  47. Domb BG, Stake CE, Lindner D, El-Bitar Y, Jackson TJ. Arthroscopic capsular plication and labral preservation in borderline hip dysplasia: two-year clinical outcomes of a surgical approach to a challenging problem. Am J Sports Med. 2013;41(11):2591–8.

    Article  PubMed  Google Scholar 

  48. Zaltz I, Kelly BT, Larson CM, Leunig M, Bedi A. Surgical treatment of femoroacetabular impingement: what are the limits of hip arthroscopy? Arthroscopy. 2014;30(1):99–110.

    Article  PubMed  Google Scholar 

  49. Nötzli HP, Müller SM, Ganz R. The relationship between fovea capitis femoris and weight bearing area in the normal and dysplastic hip in adults: a radiologic study. Z Orthop Ihre Grenzgeb. 2001;139(6):502–6.

    Article  PubMed  Google Scholar 

  50. Tannast M, Mistry S, Steppacher SD, Reichenbach S, Langlotz F, Siebenrock KA, et al. Radiographic analysis of femoroacetabular impingement with Hip2Norm-reliable and validated. J Orthop Res. 2008;26(9):1199–205.

    Article  PubMed  Google Scholar 

  51. Zheng G, Tannast M, Anderegg C, Siebenrock KA, Langlotz F. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs. Comput Methods Prog Biomed. 2007;87(1):36–45.

    Article  CAS  Google Scholar 

  52. Tönnis D. General radiography of the hip joint. In: Tönnis D, editor. Congenital dysplasia and dislocation of the hip. Heidelberg: Springer; 1987. p. 100–42.

    Chapter  Google Scholar 

  53. Wiberg G. The anatomy and roentgenographic appearance of a normal hip joint. Acta Chir Scand. 1939;83:7–38.

    Google Scholar 

  54. Murphy SB, Ganz R, Müller ME. The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am. 1995;77(7):985–9.

    Article  CAS  PubMed  Google Scholar 

  55. Idelberger K, Frank A. A new method for determination of the angle of the pelvic acetabulum in child and in adult. Z Orthop Ihre Grenzgeb. 1952;82(4):571–7.

    CAS  PubMed  Google Scholar 

  56. Jackson TJ, Estess AA, Adamson GJ. Supine and standing AP pelvis radiographs in the evaluation of pincer femoroacetabular impingement. Clin Orthop Relat Res. 2016;474(7):1692–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hipp JA, Sugano N, Millis MB, Murphy SB. Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res. 1999;364:134–43.

    Article  Google Scholar 

  58. Jacobsen S, Sonne-Holm S, Søballe K, Gebuhr P, Lund B. Hip dysplasia and osteoarthrosis: a survey of 4151 subjects from the Osteoarthrosis Substudy of the Copenhagen City Heart Study. Acta Orthop. 2005;76(2):149–58.

    Article  PubMed  Google Scholar 

  59. Crowe JF, Mani VJ, Ranawat CS. Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am. 1979;61(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  60. Hartofilakidis G, Stamos K, Karachalios T, Ioannidis TT, Zacharakis N. Congenital hip disease in adults. Classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. J Bone Joint Surg Am. 1996;78(5):683–92.

    Article  CAS  PubMed  Google Scholar 

  61. Li PLS, Ganz R. Morphologic features of congenital acetabular dysplasia: one in six is retroverted. Clin Orthop Relat Res. 2003;416:245–53.

    Article  Google Scholar 

  62. Nepple JJ, Wells J, Ross JR, Bedi A, Schoenecker PL, Clohisy JC. Three patterns of acetabular deficiency are common in young adult patients with acetabular dysplasia. Clin Orthop Relat Res. 2017;475(4):1037–44.

    Article  PubMed  Google Scholar 

  63. McClincy MP, Wylie JD, Kim Y-J, Millis MB, Novais EN. Periacetabular osteotomy improves pain and function in patients with lateral center-edge angle between 18° and 25°, but are these hips really borderline dysplastic? Clin Orthop Relat Res. 2019;477(5):1145–53. https://doi.org/10.1097/CORR.0000000000000516.

    Article  PubMed  Google Scholar 

  64. Chu C, Chen C, Liu L, Zheng G. FACTS: fully automatic CT segmentation of a hip joint. Ann Biomed Eng. 2015;43(5):1247–59.

    Article  PubMed  Google Scholar 

  65. Liu L, Ecker T, Xie L, Schumann S, Siebenrock K, Zheng G. Biomechanical validation of computer assisted planning of periacetabular osteotomy: a preliminary study based on finite element analysis. Med Eng Phys. 2015;37(12):1169–73.

    Article  CAS  PubMed  Google Scholar 

  66. Pflugi S, Vasireddy R, Lerch T, Ecker TM, Tannast M, Boemke N, et al. Augmented marker tracking for peri-acetabular osteotomy surgery. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:937–41.

    Google Scholar 

  67. Pflugi S, Vasireddy R, Lerch T, Ecker TM, Tannast M, Boemke N, et al. Augmented marker tracking for peri-acetabular osteotomy surgery. Int J Comput Assist Radiol Surg. 2018;13(2):291–304.

    Article  PubMed  Google Scholar 

  68. Ecker TM, Puls M, Steppacher SD, Bastian JD, Keel MJB, Siebenrock KA, et al. Computer-assisted femoral head-neck osteochondroplasty using a surgical milling device an in vitro accuracy study. J Arthroplast. 2012;27(2):310–6.

    Article  Google Scholar 

  69. Puls M, Ecker TM, Steppacher SD, Tannast M, Siebenrock KA, Kowal JH. Automated detection of the osseous acetabular rim using three-dimensional models of the pelvis. Comput Biol Med. 2011;41(5):285–91.

    Article  PubMed  Google Scholar 

  70. Rudolph T, Puls M, Anderegg C, Ebert L, Broehan M, Rudin A, et al. Marvin: a medical research application framework based on open source software. Comput Methods Prog Biomed. 2008;91(2):165–74.

    Article  Google Scholar 

  71. Puls M, Ecker TM, Tannast M, Steppacher SD, Siebenrock KA, Kowal JH. The equidistant method – a novel hip joint simulation algorithm for detection of femoroacetabular impingement. Comput Aided Surg. 2010;15(4–6):75–82.

    Article  PubMed  Google Scholar 

  72. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007;25(1):122–31.

    Article  PubMed  Google Scholar 

  73. Liu L, Zheng G, Bastian JD, Keel MJB, Nolte LP, Siebenrock KA, et al. Periacetabular osteotomy through the pararectus approach: technical feasibility and control of fragment mobility by a validated surgical navigation system in a cadaver experiment. Int Orthop. 2016;40(7):1389–96.

    Article  PubMed  Google Scholar 

  74. Steppacher SD, Zurmühle CA, Puls M, Siebenrock KA, Millis MB, Kim Y-J, et al. Periacetabular osteotomy restores the typically excessive range of motion in dysplastic hips with a spherical head. Clin Orthop Relat Res. 2015;473(4):1404–16.

    Article  PubMed  Google Scholar 

  75. Kubiak-Langer M, Tannast M, Murphy SB, Siebenrock KA, Langlotz F. Range of motion in anterior femoroacetabular impingement. Clin Orthop Relat Res. 2007;458:117–24.

    CAS  PubMed  Google Scholar 

  76. Röling MA, Visser MI, Oei EHG, Pilot P, Kleinrensink G-J, Bloem RM. A quantitative non-invasive assessment of femoroacetabular impingement with CT-based dynamic simulation – cadaveric validation study. BMC Musculoskelet Disord. 2015;16:50.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Armand M, Lepistö J, Tallroth K, Elias J, Chao E. Outcome of periacetabular osteotomy: joint contact pressure calculation using standing AP radiographs, 12 patients followed for average 2 years. Acta Orthop. 2005;76(3):303–13.

    Article  PubMed  Google Scholar 

  78. Zhao X, Chosa E, Totoribe K, Deng G. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis. J Orthop Sci. 2010;15(5):632–40.

    Article  PubMed  Google Scholar 

  79. Zou Z, Chávez-Arreola A, Mandal P, Board TN, Alonso-Rasgado T. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis. J Orthop Res. 2013;31(3):472–9.

    Article  PubMed  Google Scholar 

  80. Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30(7):1133–9.

    Article  PubMed  Google Scholar 

  81. Liu L, Ecker TM, Schumann S, Siebenrock K-A, Zheng G. Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy. PLoS One. 2016;11(1):e0146452.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pflugi S, Liu L, Ecker TM, Schumann S, Larissa Cullmann J, Siebenrock K, et al. A cost-effective surgical navigation solution for periacetabular osteotomy (PAO) surgery. Int J Comput Assist Radiol Surg. 2016;11(2):271–80.

    Article  PubMed  Google Scholar 

  83. Mechlenburg I, Nyengaard JR, Rømer L, Søballe K. Changes in load-bearing area after Ganz periacetabular osteotomy evaluated by multislice CT scanning and stereology. Acta Orthop Scand. 2004;75(2):147–53.

    Article  PubMed  Google Scholar 

  84. Armiger RS, Armand M, Lepisto J, Minhas D, Tallroth K, Mears SC, et al. Evaluation of a computerized measurement technique for joint alignment before and during periacetabular osteotomy. Comput Aided Surg. 2007;12(4):215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Armiger RS, Armand M, Tallroth K, Lepistö J, Mears SC. Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up. Acta Orthop. 2009;80(2):155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lepistö J, Armand M, Armiger RS. Periacetabular osteotomy in adult hip dysplasia – developing a computer aided real-time biomechanical guiding system (BGS). Suom Ortoped Traumatol. 2008;31(2):186–90.

    PubMed  PubMed Central  Google Scholar 

  87. Sutter R, Zanetti M, Pfirrmann CWA. New developments in hip imaging. Radiology. 2012;264(3):651–67.

    Article  PubMed  Google Scholar 

  88. Schmaranzer F, Todorski IAS, Lerch TD, Schwab J, Cullmann-Bastian J, Tannast M. Intra-articular lesions: imaging and surgical correlation. Semin Musculoskelet Radiol. 2017;21(5):487–506.

    Article  PubMed  Google Scholar 

  89. Agten CA, Sutter R, Buck FM, Pfirrmann CWA. Hip imaging in athletes: sports imaging series. Radiology. 2016;280(2):351–69.

    Article  PubMed  Google Scholar 

  90. Sutter R, Pfirrmann CWA. Update on Femoroacetabular impingement: what is new, and how should we assess it? Semin Musculoskelet Radiol. 2017;21(5):518–28.

    Article  PubMed  Google Scholar 

  91. Dudda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction? Clin Orthop Relat Res. 2009;467(3):651–9.

    Article  PubMed  Google Scholar 

  92. Domayer SE, Ziebarth K, Chan J, Bixby S, Mamisch TC, Kim YJ. Femoroacetabular cam-type impingement: diagnostic sensitivity and specificity of radiographic views compared to radial MRI. Eur J Radiol. 2011;80(3):805–10.

    Article  CAS  PubMed  Google Scholar 

  93. Kraeutler MJ, Chadayammuri V, Garabekyan T, Mei-Dan O. Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation. J Bone Joint Surg Am. 2018;100(3):205–10.

    Article  PubMed  Google Scholar 

  94. Lerch TD, Todorski IAS, Steppacher SD, Schmaranzer F, Werlen SF, Siebenrock KA, et al. Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips. Am J Sports Med. 2018;46(1):122–34.

    Article  PubMed  Google Scholar 

  95. Schmaranzer F, Lerch TD, Siebenrock KA, Tannast M, Steppacher SD. Differences in femoral torsion among various measurement methods increase in hips with excessive femoral torsion. Clin Orthop Relat Res. 2019;477(5):1073–83. https://doi.org/10.1097/CORR.0000000000000610.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CWA. Femoral antetorsion: comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology. 2012;263(2):475–83.

    Article  PubMed  Google Scholar 

  97. Hesham K, Carry PM, Freese K, Kestel L, Stewart JR, Delavan JA, et al. Measurement of femoral version by MRI is as reliable and reproducible as CT in children and adolescents with hip disorders. J Pediatr Orthop. 2017;37(8):557–62.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Llopis E, Fernandez E, Cerezal LMR. CT arthrography of the hip. Semin Musculoskelet Radiol. 2012;16(1):42–56.

    Article  PubMed  Google Scholar 

  99. Saied AM, Redant C, El-Batouty M, El-Lakkany MR, El-Adl WA, Anthonissen J, et al. Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement: systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18(1):83. https://doi.org/10.1186/s12891-017-1443-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol. 2011;21(4):863–74.

    Article  PubMed  Google Scholar 

  101. Shakoor D, Farahani SJ, Hafezi-Nejad N, Johnson A, Vaidya D, Khanuja HS, et al. Lesions of ligamentum teres: diagnostic performance of MRI and MR arthrography-a systematic review and meta-analysis. AJR Am J Roentgenol. 2018;211(1):W52–63.

    Article  PubMed  Google Scholar 

  102. Chopra A, Grainger AJ, Dube B, Evans R, Hodgson R, Conroy J, et al. Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol. 2018;28(3):963–71. https://doi.org/10.1007/s00330-017-5069-4.

    Article  CAS  PubMed  Google Scholar 

  103. Sutter R, Zubler V, Hoffmann A, Mamisch-Saupe N, Dora C, Kalberer F, et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol. 2014;202(1):160–9.

    Article  PubMed  Google Scholar 

  104. Magee T, Hinson G. Association of paralabral cysts with acetabular disorders. AJR Am J Roentgenol. 2000;174(5):1381–4.

    Article  CAS  PubMed  Google Scholar 

  105. Pfirrmann CWA, Duc SR, Zanetti M, Dora C, Hodler J. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology. 2008;249(1):236–41.

    Article  PubMed  Google Scholar 

  106. Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR. Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg Am. 2009;91(2):305–13.

    Article  PubMed  Google Scholar 

  107. Schmaranzer F, Lerch TD, Strasser U, Vavron P, Schmaranzer E, Tannast M. Usefulness of MR arthrography of the hip with and without leg traction in detection of intra-articular bodies. Acad Radiol. 2018. pii:S1076-6332(18)30472-0. [Epub ahead of print]. https://doi.org/10.1016/j.acra.2018.10.008.

    Article  CAS  PubMed  Google Scholar 

  108. Schmaranzer F, Klauser A, Kogler M, Henninger B, Forstner T, Reichkendler M, et al. MR arthrography of the hip with and without leg traction: assessing the diagnostic performance in detection of ligamentum teres lesions with arthroscopic correlation. Eur J Radiol. 2016;85(2):489–97.

    Article  PubMed  Google Scholar 

  109. Schmaranzer F, Klauser A, Kogler M, Henninger B, Forstner T, Reichkendler M, et al. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol. 2015;25(6):1721–30.

    Article  PubMed  Google Scholar 

  110. Schmaranzer F, Klauser A, Kogler M, Henninger B, Forstner T, Reichkendler M, et al. Improving visualization of the central compartment of the hip with direct MR arthrography under axial leg traction: a feasibility study. Acad Radiol. 2014;21(10):1240–7.

    Article  PubMed  Google Scholar 

  111. Hanke MS, Steppacher SD, Anwander H, Werlen S, Siebenrock KA, Tannast M. What MRI findings predict failure 10 years after surgery for femoroacetabular impingement? Clin Orthop Relat Res. 2017;475(4):1192–207.

    Article  PubMed  Google Scholar 

  112. Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim Y-J. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006;88(7):1540–8.

    Article  PubMed  Google Scholar 

  113. Klenke FM, Hoffmann DB, Cross BJ, Siebenrock KA. Validation of a standardized mapping system of the hip joint for radial MRA sequencing. Skelet Radiol. 2015;44(3):339–43.

    Article  Google Scholar 

  114. Adler KL, Giordano BD. The utility of hip arthroscopy in the setting of acetabular dysplasia: a systematic review. Arthroscopy. 2019;35(1):237–48.

    Article  PubMed  Google Scholar 

  115. Stelzeneder D, Mamisch TC, Kress I, Domayer SE, Werlen S, Bixby SD, et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthr Cartil. 2012;20(7):661–9.

    Article  CAS  Google Scholar 

  116. Magerkurth O, Jacobson JA, Girish G, Brigido MK, Bedi A, Fessell D. Paralabral cysts in the hip joint: findings at MR arthrography. Skelet Radiol. 2012;41(10):1279–85.

    Article  Google Scholar 

  117. Ross JR, Zaltz I, Nepple JJ, Schoenecker PL, Clohisy JC. Arthroscopic disease classification and interventions as an adjunct in the treatment of acetabular dysplasia. Am J Sports Med. 2011;39(Suppl):72S–8S.

    Article  PubMed  Google Scholar 

  118. Leunig M, Podeszwa D, Beck M, Werlen S, Ganz R. Magnetic resonance arthrography of labral disorders in hips with dysplasia and impingement. Clin Orthop Relat Res. 2004;418:74–80.

    Article  Google Scholar 

  119. Pfirrmann CWA, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology. 2006;240(3):778–85.

    Article  PubMed  Google Scholar 

  120. Haefeli PC, Steppacher SD, Babst D, Siebenrock KA, Tannast M. An increased iliocapsularis-to-rectus-femoris ratio is suggestive for instability in borderline hips. Clin Orthop Relat Res. 2015;473(12):3725–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Simon Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanke, M.S., Schmaranzer, F., Lerch, T.D., Steppacher, S.D., Siebenrock, K.A., Tannast, M. (2020). Traditional Imaging: Plain X-Rays, Three-Dimensional CT, and MR Imaging in Development Dysplasia of the Hip. In: Beaulé, P. (eds) Hip Dysplasia. Springer, Cham. https://doi.org/10.1007/978-3-030-33358-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33358-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33357-7

  • Online ISBN: 978-3-030-33358-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics