Skip to main content

Functional Imaging in Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1016 Accesses

Abstract

Hodgkin lymphoma (HL) is one of the success stories of modern oncology, with more than 90% of patients alive and 80% considered cured after long-term follow-up. Improved outcome is the result of numerous factors including more accurate staging, more effective chemo and chemoradiotherapy, and newer targeted agents. More recently, risk-adapted strategies using PET-CT have further improved outcomes for high-risk patients, while reducing toxicities for low-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A et al (2018) Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 378(4):331–344

    Article  CAS  PubMed  Google Scholar 

  2. Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, Hasenclever D et al (2003) Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin's disease. N Engl J Med 348(24):2386–2395

    Article  CAS  PubMed  Google Scholar 

  3. Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607

    Article  CAS  PubMed  Google Scholar 

  4. Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A et al (2016) Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med 374(25):2419–2429

    Article  PubMed  PubMed Central  Google Scholar 

  5. Press OW, Li H, Schoder H, Straus DJ, Moskowitz CH, LeBlanc M et al (2016) US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim Fluorodeoxyglucose-positron emission tomography imaging: southwest oncology group S0816. J Clin Oncol 34(17):2020–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zinzani PL, Broccoli A, Gioia DM, Castagnoli A, Ciccone G, Evangelista A et al (2016) Interim positron emission tomography response-adapted therapy in advanced-stage Hodgkin lymphoma: final results of the phase II part of the HD0801 study. J Clin Oncol 34(12):1376–1385

    Article  CAS  PubMed  Google Scholar 

  7. Andre MPE, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M et al (2017) Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 35(16):1786–1794

    Article  CAS  PubMed  Google Scholar 

  8. Cheson BD (2011) Role of functional imaging in the management of lymphoma. J Clin Oncol 29(14):1844–1854

    Article  PubMed  Google Scholar 

  9. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32(27):3059–3068

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol 32(27):3048–3058

    Article  PubMed  PubMed Central  Google Scholar 

  11. Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M et al (2013) International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med 54(5):683–690

    Article  CAS  PubMed  Google Scholar 

  12. Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M et al (2014) The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica 99(6):1107–1113

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J et al (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107(1):52–59

    Article  CAS  PubMed  Google Scholar 

  14. Kostakoglu L, Goldsmith SJ, Leonard JP, Christos P, Furman RR, Atasever T et al (2006) FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease. Cancer 107(11):2678–2687

    Article  PubMed  Google Scholar 

  15. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M et al (2007) Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol 25(24):3746–3752

    Article  CAS  PubMed  Google Scholar 

  16. Rigacci L, Puccini B, Zinzani PL, Biggi A, Castagnoli A, Merli F et al (2015) The prognostic value of positron emission tomography performed after two courses (INTERIM-PET) of standard therapy on treatment outcome in early stage Hodgkin lymphoma: a multicentric study by the fondazione italiana linfomi (FIL). Am J Hematol 90(6):499–503

    Article  CAS  PubMed  Google Scholar 

  17. Gallamini A, Tarella C, Viviani S, Rossi A, Patti C, Mule A et al (2018) Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J Clin Oncol 36(5):454–462

    Article  CAS  PubMed  Google Scholar 

  18. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 34(23):2690–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  CAS  PubMed  Google Scholar 

  20. Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL et al (2018) Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol 36(14):1428–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P et al (2017) Phase II study of the efficacy and safety of Pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 35(19):2125–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A et al (2012) Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced-stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379(9828):1791–1799

    Article  CAS  PubMed  Google Scholar 

  23. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M (1971) Report of the committee on Hodgkin’s disease staging classification. Cancer Res 31(11):1860–1861

    CAS  PubMed  Google Scholar 

  24. Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC et al (1989) Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol 7(11):1630–1636

    Article  CAS  PubMed  Google Scholar 

  25. Glatstein E, Guernsey JM, Rosenberg SA, Kaplan HS (1969) The value of laparotomy and splenectomy in the staging of Hodgkin’s disease. Cancer 24(4):709–718

    Article  CAS  PubMed  Google Scholar 

  26. Castellino RA, Hoppe RT, Blank N, Young SW, Neumann C, Rosenberg SA et al (1984) Computed tomography, lymphography, and staging laparotomy: correlations in initial staging of Hodgkin disease. AJR Am J Roentgenol 143(1):37–41

    Article  CAS  PubMed  Google Scholar 

  27. DeVita VT Jr, Simon RM, Hubbard SM, Young RC, Berard CW, Moxley JH III et al (1980) Curability of advanced Hodgkin’s disease with chemotherapy. Long-term follow-up of MOPP-treated patients at the National Cancer Institute. Ann Intern Med 92(5):587–595

    Article  PubMed  Google Scholar 

  28. Gospodarowicz MK, O'Sullivan B, Koh ES (2006) Prognostic factors: principles and applications. In: Gospodarowicz MK, O’Sullivan B, Sobin LH (eds) Prognostic factors in cancer, 3rd edn. Wiley-Liss, Hoboken, NJ, pp 23–28

    Google Scholar 

  29. Diehl V, Stein H, Hummel M, Zollinger R, Connors JM (2003) Hodgkin’s lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology Am Soc Hematol Educ Program 2003:225–247

    Article  Google Scholar 

  30. Hutchings M, Loft A, Hansen M, Pedersen LM, Berthelsen AK, Keiding S et al (2006) Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica 91(4):482–489

    PubMed  Google Scholar 

  31. El Galaly TC, d'Amore F, Mylam KJ, Nully Brown P, Bgsted M, Bukh A et al (2012) Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol 30(36):4508–4514

    Article  PubMed  Google Scholar 

  32. Alzahrani M, El-Galaly TC, Hutchings M, Hansen JW, Loft A, Johnsen HE et al (2016) The value of routine bone marrow biopsy in patients with diffuse large B-cell lymphoma staged with PET/CT: a Danish-Canadian study. Ann Oncol 27(6):1095–1099

    Article  CAS  PubMed  Google Scholar 

  33. Thompson CJ (2002) Instrumentation. In: Wahl RL (ed) Principles and practice of positron emission tomography. Lippincott Williams & Wilkins, Philadelphia, PA, pp 48–64

    Google Scholar 

  34. Finn RD, Schlyer DJ (2002) Production of radionuclides for PET. In: Wahl RL (ed) Principles and practice of positron emission tomography. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1–15

    Google Scholar 

  35. Fowler JS, Ding Y (2002) Chemistry. In: Wahl RL (ed) Principles and practice of positron emission tomography. Lippincott Williams & Wilkins, Philadelphia, PA, pp 16–47

    Google Scholar 

  36. Ell PJ, von Schulthess GKPET (2002) CT: a new road map. Eur J Nucl Med Mol Imaging 29(6):719–720

    Article  PubMed  Google Scholar 

  37. Warburg O (1926) Über den Stoffwechsel der Tumoren: arbeiten aus dem Kaiser Wilhelm-Institut für Biologie, Berlin-Dahlem. Springer, Berlin

    Google Scholar 

  38. Au KK, Liong E, Li JY, Li PS, Liew CC, Kwok TT et al (1997) Increases in mRNA levels of glucose transporters types 1 and 3 in Ehrlich ascites tumor cells during tumor development. J Cell Biochem 67(1):131–135

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N et al (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170(1):223–230

    Article  CAS  PubMed  Google Scholar 

  40. Brown RS, Wahl RL (1993) Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72(10):2979–2985

    Article  CAS  PubMed  Google Scholar 

  41. Aloj L, Caraco C, Jagoda E, Eckelman WC, Neumann RD (1999) Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res 59(18):4709–4714

    CAS  PubMed  Google Scholar 

  42. Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34(3):414–419

    CAS  PubMed  Google Scholar 

  43. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1996) Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 37(6):1042–1047

    CAS  PubMed  Google Scholar 

  44. Wahl RL, Henry CA, Ethier SP (1992) Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology 183(3):643–647

    Article  CAS  PubMed  Google Scholar 

  45. Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36(9):1625–1632

    CAS  PubMed  Google Scholar 

  46. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33(11):1972–1980

    CAS  PubMed  Google Scholar 

  47. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1995) Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma: I. Are inflammatory cells important? J Nucl Med 36(10):1854–1861

    CAS  PubMed  Google Scholar 

  48. Higashi K, Clavo AC, Wahl RL (1993) In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 34(5):773–779

    CAS  PubMed  Google Scholar 

  49. Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, Verhoef G et al (2003) [(18)F]FDG PET monitoring of tumour response to chemotherapy: does [(18)F]FDG uptake correlate with the viable tumour cell fraction? Eur J Nucl Med Mol Imaging 30(5):682–688

    Article  CAS  PubMed  Google Scholar 

  50. Hutchings M, Loft A, El-Galaly TC (2016) PET/CT for Hodgkin lymphoma staging. In: Gallamini A (ed) PET scan in Hodgkin lymphoma. Springer, Heidelberg, pp 1–13

    Google Scholar 

  51. Bednaruk-Mlynski E, Pienkowska JF, Skorzak AF, Malkowski BF, Kulikowski WF, Subocz EF, Dzietczenia J et al (2015) Comparison of positron emission tomography/computed tomography with classical contrast-enhanced computed tomography in the initial staging of Hodgkin lymphoma. Leuk Lymphoma 56(2):377–382

    Article  CAS  PubMed  Google Scholar 

  52. Barrington SF, Kirkwood AA, Franceschetto A, Fulham MJ, Roberts TH, Almquist H et al (2016) PET-CT for staging and early response: results from the response-adapted therapy in advanced Hodgkin lymphoma study. Blood 127(12):1531–1538

    Article  CAS  PubMed  Google Scholar 

  53. Weiler-Sagie M, Kagna O, Dann EJ, Ben-Barak A, Israel O (2014) Characterizing bone marrow involvement in Hodgkin’s lymphoma by FDG-PET/CT. Eur J Nucl Med Mol Imaging 41(6):1133–1140

    Article  PubMed  Google Scholar 

  54. Zwarthoed C, El-Galaly TC, Canepari M, Ouvrier MJ, Viotti J, Ettaiche M et al (2017) Prognostic value of bone marrow tracer uptake pattern in baseline PET scans in Hodgkin lymphoma: results from an international collaborative study. J Nucl Med 58(8):1249–1254

    Article  CAS  PubMed  Google Scholar 

  55. Levis A, Pietrasanta D, Godio L, Vitolo U, Ciravegna G, Di Vito F et al (2004) A large-scale study of bone marrow involvement in patients with Hodgkin’s lymphoma. Clin Lymphoma 5(1):50–55

    Article  PubMed  Google Scholar 

  56. Brunning RD, Bloomfield CD, McKenna RW, Peterson LA (1975) Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med 82(3):365–366

    Article  CAS  PubMed  Google Scholar 

  57. Voltin CA, Goergen H, Baues C, Fuchs M, Mettler J, Kreissl S et al (2018) Value of bone marrow biopsy in Hodgkin lymphoma patients staged by FDG PET: results from the German Hodgkin study group trials HD16, HD17, and HD18. Ann Oncol 29(9):1926–1931

    Article  PubMed  Google Scholar 

  58. Purz S, Mauz-Korholz C, Korholz D, Hasenclever D, Krausse A, Sorge I et al (2011) [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29(26):3523–3528

    Article  PubMed  Google Scholar 

  59. Ferme C, Eghbali H, Meerwaldt JH, Rieux C, Bosq J, Berger F et al (2007) Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med 357(19):1916–1927

    Article  CAS  PubMed  Google Scholar 

  60. Cottereau AS, Versari A, Loft A, Casasnovas O, Bellei M, Ricci R et al (2018) Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood 131(13):1456–1463

    Article  CAS  PubMed  Google Scholar 

  61. Kostakoglu L, Chauvie S (2018) Metabolic tumor volume metrics in lymphoma. Semin Nucl Med 48(1):50–66

    Article  PubMed  Google Scholar 

  62. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  63. Radford JA, Cowan RA, Flanagan M, Dunn G, Crowther D, Johnson RJ et al (1988) The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin’s disease. J Clin Oncol 6(6):940–946

    Article  CAS  PubMed  Google Scholar 

  64. Surbone A, Longo DL, DeVita VT Jr, Ihde DC, Duffey PL, Jaffe ES et al (1988) Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol 6(12):1832–1837

    Article  CAS  PubMed  Google Scholar 

  65. Naumann R, Vaic A, Beuthien-Baumann B, Bredow J, Kropp J, Kittner T et al (2001) Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin's disease and non-Hodgkin’s lymphoma. Br J Haematol 115(4):793–800

    Article  CAS  PubMed  Google Scholar 

  66. Hutchings M, Kostakoglu L, Zaucha JM, Malkowski B, Biggi A, Danielewicz I et al (2014) In vivo treatment sensitivity testing with positron emission tomography/computed tomography after one cycle of chemotherapy for Hodgkin lymphoma. J Clin Oncol 32(25):2705–2711

    Article  PubMed  Google Scholar 

  67. Zaucha JM, Malkowski B, Chauvie S, Subocz E, Tajer J, Kulikowski W et al (2017) The predictive role of interim PET after the first chemotherapy cycle and sequential evaluation of response to ABVD in Hodgkin’s lymphoma patients-the polish lymphoma research group (PLRG) observational study. Ann Oncol 28(12):3051–3057

    Article  CAS  PubMed  Google Scholar 

  68. Cerci JJ, Pracchia LF, Linardi CC, Pitella FA, Delbeke D, Izaki M et al (2010) 18F-FDG PET after 2 cycles of ABVD predicts event-free survival in early and advanced Hodgkin lymphoma. J Nucl Med 51(9):1337–1343

    Article  CAS  PubMed  Google Scholar 

  69. Zinzani P, Rigacci L, Stefoni V, Broccoli A, Puccini B, Castagnoli A et al (2012) Early interim 18F-FDG PET in Hodgkin’s lymphoma: evaluation on 304 patients. Eur J Nucl Med Mol Imaging 39(1):4–12

    Article  PubMed  Google Scholar 

  70. Terasawa T, Lau J, Bardet S, Couturier O, Hotta T, Hutchings M et al (2009) Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin’s lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol 27(11):1906–1914

    Article  PubMed  Google Scholar 

  71. Maynard J, Emmas SA, Ble FX, Barjat H, Lawrie E, Hancox U et al (2016) The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3Kbeta/delta inhibitor. EJNMMI Res 6(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simontacchi G, Filippi AR, Ciammella P, Buglione M, Saieva C, Magrini SM et al (2015) Interim PET after two ABVD cycles in early-stage Hodgkin lymphoma: outcomes following the continuation of chemotherapy plus radiotherapy. Int J Radiat Oncol Biol Phys 92(5):1077–1083

    Article  PubMed  Google Scholar 

  73. Evens AM, Kostakoglu L (2014) The role of FDG-PET in defining prognosis of Hodgkin lymphoma for early-stage disease. Blood 124(23):3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sher DJ, Mauch PM, Van Den Abbeele A, LaCasce AS, Czerminski J, Ng AK (2009) Prognostic significance of mid- and post-ABVD PET imaging in Hodgkin’s lymphoma: the importance of involved-field radiotherapy. Ann Oncol 20(11):1848–1853

    Article  CAS  PubMed  Google Scholar 

  75. Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahl RL (2006) Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med 47(4):603–608

    CAS  PubMed  Google Scholar 

  76. Kasamon YL, Jones RJ, Wahl RL (2007) Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med 48(Suppl 1):19S–27S

    CAS  PubMed  Google Scholar 

  77. Zijlstra JM, Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen II, Huijgens PC (2006) 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 91(4):522–529

    PubMed  Google Scholar 

  78. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586

    Article  PubMed  Google Scholar 

  79. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C (2009) Report on the first international workshop on interim-PET scan in lymphoma. Leuk Lymphoma 50(8):1257–1260

    Article  PubMed  Google Scholar 

  80. Barnes JA, LaCasce AS, Zukotynski K, Israel D, Feng Y, Neuberg D et al (2011) End-of-treatment but not interim PET scan predicts outcome in nonbulky limited-stage Hodgkin’s lymphoma. Ann Oncol 22(4):910–915

    Article  CAS  PubMed  Google Scholar 

  81. Fallanca F, Alongi P, Incerti E, Gianolli L, Picchio M, Kayani I et al (2016) Diagnostic accuracy of FDG PET/CT for clinical evaluation at the end of treatment of HL and NHL: a comparison of the Deauville criteria (DC) and the international harmonization project criteria (IHPC). Eur J Nucl Med Mol Imaging 43(10):1837–1848

    Article  CAS  PubMed  Google Scholar 

  82. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P et al (1999) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 94(2):429–433

    Article  CAS  PubMed  Google Scholar 

  83. Terasawa T, Nihashi T, Hotta T, Nagai H (2008) 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive non-Hodgkin's lymphoma: a systematic review. J Nucl Med 49(1):13–21

    Article  PubMed  Google Scholar 

  84. Savage KJ, Connors JM, Villa DR, Hapgood G, Gerrie AS, Shenkier TN et al (2015) Advanced-stage classical Hodgkin lymphoma patients with a negative PET-scan following treatment with ABVD have excellent outcomes without the need for consolidative radiotherapy regardless of disease bulk at presentation. Blood 126(23):579

    Article  Google Scholar 

  85. Picardi M, De Renzo A, Pane F, Nicolai E, Pacelli R, Salvatore M et al (2007) Randomized comparison of consolidation radiation versus observation in bulky Hodgkin’s lymphoma with post-chemotherapy negative positron emission tomography scans. Leuk Lymphoma 48(9):1721–1727

    Article  PubMed  Google Scholar 

  86. Hutchings M, Mikhaeel NG, Fields PA, Nunan T, Timothy AR (2005) Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol 16(7):1160–1168

    Article  CAS  PubMed  Google Scholar 

  87. Gallamini A, Fiore F, Sorasio R, Meignan M (2009) Interim positron emission tomography scan in Hodgkin lymphoma: definitions, interpretation rules, and clinical validation. Leuk Lymphoma 50(11):1761–1764

    Article  PubMed  Google Scholar 

  88. Hoppe RT, Advani RH, Ai WZ, Ambinder RF, Aoun P, Armand P et al (2018) NCCN guidelines insights: Hodgkin lymphoma, version 1. J Natl Compr Canc Netw 16(3):245–254

    Article  PubMed  Google Scholar 

  89. Eichenauer DA, Aleman BMP, Andre M, Federico M, Hutchings M, Illidge T et al (2018) Hodgkin lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29:iv19

    Article  CAS  PubMed  Google Scholar 

  90. Follows GA, Ardeshna KM, Barrington SF, Culligan DJ, Hoskin PJ, Linch D et al (2014) Guidelines for the first line management of classical Hodgkin lymphoma. Br J Haematol 166(1):34–49

    Article  CAS  PubMed  Google Scholar 

  91. Barrington SF, Qian W, Somer EJ, Franceschetto A, Bagni B, Brun E et al (2010) Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37(10):1824–1833

    Article  PubMed  Google Scholar 

  92. Hasenclever D, Kurch LF, Mauz-Korholz CF, Elsner AF, Georgi TF, Wallace HF et al (2014) qPET – a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur J Nucl Med Mol Imaging 41(7):1301–1308

    Article  PubMed  Google Scholar 

  93. Canellos GP (1988) Residual mass in lymphoma may not be residual disease. J Clin Oncol 6(6):931–933

    Article  CAS  PubMed  Google Scholar 

  94. van BK, Kelta M, Bahaguna P (2001) Primary mediastinal B-cell lymphoma: a review of pathology and management. J Clin Oncol 19(6):1855–1864

    Article  Google Scholar 

  95. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De LL et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102(12):3871–3879

    Article  CAS  PubMed  Google Scholar 

  96. Martelli M, Ceriani L, Zucca E, Zinzani PL, Ferreri AJ, Vitolo U et al (2014) [18F]fluorodeoxyglucose positron emission tomography predicts survival after chemoimmunotherapy for primary mediastinal large B-cell lymphoma: results of the international extranodal lymphoma study group IELSG-26 study. J Clin Oncol 32(17):1769–1775

    Article  PubMed  Google Scholar 

  97. Melani C, Advani R, Roschewski M, Walters KM, Chen CC, Baratto L et al (2018) End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted EPOCH-R: a paradigm shift in clinical decision making. Haematologica 103(8):1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pinnix CC, Ng AK, Dabaja BS, Milgrom SA, Gunther JR, Fuller CD et al (2018) Positron emission tomography-computed tomography predictors of progression after DA-R-EPOCH for PMBCL. Blood Adv 2(11):1334–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barrington SF, Kluge R (2017) FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging 44(Suppl 1):97–110

    Article  PubMed  PubMed Central  Google Scholar 

  100. Robert C, Schachter JF, Long GV, Arance A, Arance AF, Grob JJ, Mortier L, Mortier LF et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  101. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  102. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J et al (2016) Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 34(31):3733–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA et al (2016) Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 128(21):2489

    Article  CAS  PubMed  Google Scholar 

  106. Girinsky T, Pichenot C, Beaudre A, Ghalibafian M, Lefkopoulos D (2006) Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int J Radiat Oncol Biol Phys 64(1):218–226

    Article  PubMed  Google Scholar 

  107. Girinsky T, van der Maazen R, Specht L, Aleman B, Poortmans P, Lievens Y et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79(3):270–277

    Article  PubMed  Google Scholar 

  108. Specht L, Gray RG, Clarke MJ, Peto R (1998) Influence of more extensive radiotherapy and adjuvant chemotherapy on long-term outcome of early-stage Hodgkin's disease: a meta-analysis of 23 randomized trials involving 3,888 patients. International Hodgkin's disease collaborative group. J Clin Oncol 16(3):830–843

    Article  CAS  PubMed  Google Scholar 

  109. Yahalom J (2005) Transformation in the use of radiation therapy of Hodgkin lymphoma: new concepts and indications lead to modern field design and are assisted by PET imaging and intensity modulated radiation therapy (IMRT). Eur J Haematol Suppl 66:90–97

    Article  Google Scholar 

  110. Gregoire V (2004) Is there any future in radiotherapy planning without the use of PET: unraveling the myth. Radiother Oncol 73(3):261–263

    Article  PubMed  Google Scholar 

  111. Berthelsen AK, Dobbs J, Kjellén E, Landberg T, Möller T, Nilsson P et al (2007) What’s new in target volume definitions for radiologists in ICRU report 71? How can the ICRU volume definitions be integrated in clinical practice? Cancer Imaging 7(1):104–116

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jarritt PH, Carson KJ, Hounsell AR, Visvikis D (2006) The role of PET/CT scanning in radiotherapy planning. Br J Radiol 79(1):S27–S35

    Article  PubMed  Google Scholar 

  113. Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT et al (2014) Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys 89(4):854–862

    Article  PubMed  Google Scholar 

  114. Specht L (2007) 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas. Semin Radiat Oncol 17(3):190–197

    Article  PubMed  Google Scholar 

  115. van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V et al (2006) The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 32(4):245–260

    Article  PubMed  Google Scholar 

  116. Dizendorf EV, Baumert BG, von Schulthess GK, Lutolf UM, Steinert HC (2003) Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med 44(1):24–29

    PubMed  Google Scholar 

  117. Lee YK, Cook G, Flower MA, Rowbottom C, Shahidi M, Sharma B et al (2004) Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol 73(3):277–283

    Article  PubMed  Google Scholar 

  118. Hutchings M, Loft A, Hansen M, Berthelsen AK, Specht L (2007) Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol 78(3):206–212

    Article  PubMed  Google Scholar 

  119. Girinsky T, Ghalibafian M, Bonniaud G, Bayla A, Magne N, Ferreira I et al (2007) Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol 85(2):178–186

    Article  PubMed  Google Scholar 

  120. Josting A, Muller H, Borchmann P, Baars JW, Metzner B, Dohner H et al (2010) Dose intensity of chemotherapy in patients with relapsed Hodgkin’s lymphoma. J Clin Oncol 28(34):5074–5080

    Article  PubMed  Google Scholar 

  121. Brockelmann PJ, Muller H, Casasnovas O, Hutchings M, von TB, Jurgens M et al (2017) Risk factors and a prognostic score for survival after autologous stem-cell transplantation for relapsed or refractory Hodgkin lymphoma. Ann Oncol 28(6):1352–1358

    Article  CAS  PubMed  Google Scholar 

  122. Moskowitz CH, Matasar MJ, Zelenetz AD, Nimer SD, Gerecitano J, Hamlin P et al (2012) Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood 119(7):1665–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gentzler RD, Evens AM, Rademaker AW, Weitner BB, Mittal BB, Dillehay GL et al (2014) F-18 FDG-PET predicts outcomes for patients receiving total lymphoid irradiation and autologous blood stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Br J Haematol 165(6):793–800

    Article  CAS  PubMed  Google Scholar 

  124. Devillier R, Coso D, Castagna L, Brenot R, Anastasia A, Chiti A et al (2012) positron emission tomography response at the time of autologous stem cell transplantation predicts outcome of patients with relapsed and/or refractory Hodgkin's lymphoma responding to prior salvage therapy. Haematologica 97(7):1073–1079

    Article  PubMed  PubMed Central  Google Scholar 

  125. Poulou LS, Thanos L, Ziakas PD (2010) Unifying the predictive value of pretransplant FDG PET in patients with lymphoma: a review and meta-analysis of published trials. Eur J Nucl Med Mol Imaging 37(1):156–162

    Article  PubMed  Google Scholar 

  126. Moskowitz AJ, Schoder H, Gavane S, Thoren KL, Fleisher M, Yahalom J et al (2017) Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood 130(20):2196–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gallamini A (2017) Relapsed/refractory HL: FDG-PET is the trump card. Blood 130(20):2154–2155

    Article  CAS  PubMed  Google Scholar 

  128. Armitage JO, Loberiza FR (2006) Is there a place for routine imaging for patients in complete remission from aggressive lymphoma? Ann Oncol 17(6):883–884

    Article  CAS  PubMed  Google Scholar 

  129. Radford JA, Eardley A, Woodman C, Crowther D (1997) Follow up policy after treatment for Hodgkin’s disease: too many clinic visits and routine tests? A review of hospital records. BMJ 314(7077):343–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gallamini A, Kostakoglu L (2012) Positron emission tomography/computed tomography surveillance in patients with lymphoma: a fox hunt? Haematologica 97(6):797–799

    Article  PubMed  PubMed Central  Google Scholar 

  131. Petrausch U, Samaras P, Veit-Haibach P, Tschopp A, Soyka JD, Knuth A et al (2010) Hodgkin’s lymphoma in remission after first-line therapy: which patients need FDG-PET/CT for follow-up? Ann Oncol 21(5):1053–1057

    Article  CAS  PubMed  Google Scholar 

  132. Zinzani PL, Stefoni V, Tani M, Fanti S, Musuraca G, Castellucci P et al (2009) Role of [18F]fluorodeoxyglucose positron emission tomography scan in the follow-up of lymphoma. J Clin Oncol 27(11):1781–1787

    Article  PubMed  Google Scholar 

  133. Jerusalem G, Beguin Y, Fassotte MF, Belhocine T, Hustinx R, Rigo P et al (2003) Early detection of relapse by whole-body positron emission tomography in the follow-up of patients with Hodgkin's disease. Ann Oncol 14(1):123–130

    Article  CAS  PubMed  Google Scholar 

  134. El Galaly TC, Mylam KJ, Brown P, Specht L, Christiansen I, Munksgaard L et al (2012) Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs. Haematologica 97(6):931–936

    Article  PubMed  PubMed Central  Google Scholar 

  135. Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Van’t Veer MB, Bartelink H, van Leeuwen FE (2003) Long-term cause-specific mortality of patients treated for Hodgkin's disease. J Clin Oncol 21(18):3431–3439

    Article  PubMed  Google Scholar 

  136. Raemaekers JM, Andre MP, Federico M, Girinsky T, Oumedaly R, Brusamolino E et al (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32(12):1188–1194

    Article  PubMed  Google Scholar 

  137. Fuchs M, Goergen H, Kobe C, Kuhnert G, Lohri A, Greil R et al (2019) Positron Emission Tomography-guided treatment in early-stage favorable Hodgkin lymphoma: final results of the international, randomized phase III HD16 trial by the German Hodgkin Study Group. J Clin Oncol 37(31):2835–2845

    Google Scholar 

  138. Engert A, Diehl V, Franklin J, Lohri A, Dorken B, Ludwig WD et al (2009) Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin's lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol 27(27):4548–4554

    Article  PubMed  Google Scholar 

  139. Trotman J (2017) Foss+Ñ a, Federico M, Stevens L, Kirkwood a, Clifton-Hadley L, et al. Response-adjusted therapy for advanced Hodgkin lymphoma (rathl) trial: longer follow up confirms efficacy of de-escalation after a negative interim PET scan (CRUK/07/033). Hematol Oncol 35(S2):65–67

    Article  Google Scholar 

  140. Borchmann P, Goergen H, Kobe C, Lohri A, Greil R, Eichenauer DA et al (2018) PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin study group. Lancet 390(10114):2790–2802

    Article  Google Scholar 

  141. Borchmann P, Goergen H, Kobe C, Lohri A, Greil R, Eichenauer DA et al (2017) Early interim PET in patients with advanced-stage Hodgkin’s lymphoma treated within the phase 3 GHSG HD18 study. Blood 130(Suppl 1):737

    Google Scholar 

  142. Casasnovas RO, Bouabdallah R, Brice P, Lazarovici J, Ghesquieres H, Stamatoullas A et al (2019) PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol 20(2):202–215

    Article  PubMed  Google Scholar 

  143. Kobe C, Dietlein M, Franklin J, Markova J, Lohri A, Amthauer H et al (2008) Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood 112(10):3989–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mocikova H, Pytlik R, Markova J, Steinerova K, Kral Z, Belada D et al (2011) Pre-transplant positron emission tomography in relapsed Hodgkin lymphoma patients. Leuk Lymphoma 52:1668

    Article  PubMed  Google Scholar 

  145. Smeltzer JP, Cashen AF, Zhang Q, Homb A, Dehdashti F, Abboud CN et al (2011) Prognostic significance of FDG-PET in relapsed or refractory classical Hodgkin lymphoma treated with standard salvage chemotherapy and autologous stem cell transplantation. Biol Blood Marrow Transplant 17(11):1646–1652

    Article  PubMed  PubMed Central  Google Scholar 

  146. Moskowitz AJ, Yahalom J, Kewalramani T, Maragulia JC, Vanak JM, Zelenetz AD et al (2010) Pretransplantation functional imaging predicts outcome following autologous stem cell transplantation for relapsed and refractory Hodgkin lymphoma. Blood 116(23):4934–4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moskowitz AJ, Schoder H, Yahalom J, McCall SJ, Fox SY, Gerecitano J et al (2015) PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosfamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin's lymphoma: a non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol 16(3):284–292

    Article  CAS  PubMed  Google Scholar 

  148. Reyal Y, Kayani I, Bloor AJC, Fox CP, Chakraverty R, Sjursen AM et al (2016) Impact of pretransplantation 18F-fluorodeoxyglucose-positron emission tomography on survival outcomes after T cell depleted allogeneic transplantation for Hodgkin lymphoma. Biol Blood Marrow Transplant 22(7):1234–1241

    Article  PubMed  Google Scholar 

  149. Marani C, Raiola AM, Morbelli S, Dominietto A, Ferrarazzo G, Avenoso D et al (2018) Haploientical transplants with post-transplant cyclophosphamide for relapsed or refractory Hodgkin lymphoma: the role of comorbidity index and Pretransplant positron emission tomography. Biol Blood Marrow Transplant 24(12):2501–2508

    Article  CAS  PubMed  Google Scholar 

  150. Dodero A, Crocchiolo R, Patriarca F, Miceli R, Castagna L, Ciceri F et al (2010) Pretransplantation [18-F]fluorodeoxyglucose positron emission tomography scan predicts outcome in patients with recurrent Hodgkin lymphoma or aggressive non-Hodgkin lymphoma undergoing reduced-intensity conditioning followed by allogeneic stem cell transplantation. Cancer 116(21):5001–5011

    Article  PubMed  Google Scholar 

  151. Lambert JR, Bomanji JB, Peggs KS, Thomson KJ, Chakraverty RK, Fielding AK et al (2010) Prognostic role of PET scanning before and after reduced-intensity allogeneic stem cell transplantation for lymphoma. Blood 115(14):2763–2768

    Article  CAS  PubMed  Google Scholar 

  152. Hart DP, Avivi I, Thomson KJ, Peggs KS, Morris EC, Goldstone AH et al (2005) Use of 18F-FDG positron emission tomography following allogeneic transplantation to guide adoptive immunotherapy with donor lymphocyte infusions. Br J Haematol 128(6):824–829

    Article  CAS  PubMed  Google Scholar 

  153. Juweid ME, Wiseman GA, Vose JM, Ritchie JM, Menda Y, Wooldridge JE et al (2005) Response assessment of aggressive non-Hodgkin's lymphoma by integrated international workshop criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol 23(21):4652–4661

    Article  PubMed  Google Scholar 

  154. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 17(4):1244

    Article  CAS  PubMed  Google Scholar 

  155. Trotman J, Luminari S, Boussetta S, Versari A, Dupuis J, Tychyj C et al (2014) Prognostic value of PET-CT after first-line therapy in patients with follicular lymphoma: a pooled analysis of central scan review in three multicentre studies. Lancet Haematol 1(1):e17–e27

    Article  PubMed  Google Scholar 

  156. Puccini B, Nassi L, Minoia C, Volpetti S, Ciancia R, Riccomagno PC et al (2017) Role of bone marrow biopsy in staging of patients with classical Hodgkin's lymphoma undergoing positron emission tomography/computed tomography. Ann Hematol 96(7):1147–1153

    Article  CAS  PubMed  Google Scholar 

  157. Eve HE, Rule SA (2010) Lenalidomide-induced tumour flare reaction in mantle cell lymphoma. Br J Haematol 151(4):410–412

    Article  PubMed  Google Scholar 

  158. Corazzelli G, De FR, Capobianco G, Frigeri F, De R et al (2010) Tumor flare reactions and response to lenalidomide in patients with refractory classic Hodgkin lymphoma. Am J Hematol 85(1):87–90

    PubMed  Google Scholar 

  159. Andritsos LA, Johnson AJ, Lozanski G, Blum W, Kefauver C, Awan F et al (2008) Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J Clin Oncol 26(15):2519–2525

    Article  CAS  PubMed  Google Scholar 

  160. Chanan-Khan A, Miller KC, Musial L, Lawrence D, Padmanabhan S, Takeshita K et al (2006) Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol 24(34):5343–5349

    Article  CAS  PubMed  Google Scholar 

  161. Han HS, Escalon MP, Hsiao B, Serafini A, Lossos IS (2009) High incidence of false-positive PET scans in patients with aggressive non-Hodgkin's lymphoma treated with rituximab-containing regimens. Ann Oncol 20(2):309–318

    Article  CAS  PubMed  Google Scholar 

  162. Skoura E, Ardeshna K, Halsey R, Wan S, Kayani I (2016) False-positive 18F-FDG PET/CT imaging: dramatic “flare response” after rituximab administration. Clin Nucl Med 41(3):e171–e172

    Article  PubMed  Google Scholar 

  163. Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T et al (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30(18):2190–2196

    Article  CAS  PubMed  Google Scholar 

  164. Gopal AK, Schuster SJ, Fowler NH, Trotman J, Hess G, Hou JZ et al (2018) Ibrutinib as treatment for patients with relapsed/refractory follicular lymphoma: results from the open-label, multicenter, phase II DAWN study. J Clin Oncol 36(23):2405–2412

    Article  CAS  PubMed  Google Scholar 

  165. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND et al (2014) Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 123(22):3390–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA et al (2015) Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood 125(24):3679–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. van Eijndhoven MA, Zijlstra JM, Groenewegen NJ, Drees EE et al (2016) Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight 1(19):e89631

    PubMed  PubMed Central  Google Scholar 

  168. Spina V, Bruscaggin A, Cuccaro A, Martini M, Di TM, Forestieri G et al (2018) Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131(22):2413–2425

    Article  CAS  PubMed  Google Scholar 

  169. Cuccaro A, Annunziata S, Cupelli E, Martini M, Calcagni ML, Rufini V et al (2016) CD68+ cell count, early evaluation with PET and plasma TARC levels predict response in Hodgkin lymphoma. Cancer Med 5(3):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Agostinelli C, Gallamini A, Stracqualursi L, Agati P, Tripodo C, Fuligni F et al (2016) The combined role of biomarkers and interim PET scan in prediction of treatment outcome in classical Hodgkin's lymphoma: a retrospective, European, Multicentre Cohort Study. Lancet Haematol 3(10):e467–e479

    Article  PubMed  Google Scholar 

  171. Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J et al (2007) Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med 48(10):1626–1632

    Article  PubMed  Google Scholar 

  172. Itti E, Lin C, Dupuis J, Paone G, Capacchione D, Rahmouni A et al (2009) Prognostic value of interim 18F-FDG PET in patients with diffuse large B-cell lymphoma: SUV-based assessment at 4 cycles of chemotherapy. J Nucl Med 50(4):527–533

    Article  PubMed  Google Scholar 

  173. Biggi A, Bergesio F, Chauvie S, Bianchi A, Menga M, Fallanca F et al (2017) Concomitant semi-quantitative and visual analysis improves the predictive value on treatment outcome of interim 18F-fluorodeoxyglucose/positron emission tomography in advanced Hodgkin lymphoma. Q J Nucl Med Mol Imaging. https://doi.org/10.23736/S1824-4785

  174. Cerci JJ, Trindade E, Pracchia LF, Pitella FA, Linardi CC, Soares J Jr et al (2010) Cost effectiveness of positron emission tomography in patients with Hodgkin’s lymphoma in unconfirmed complete remission or partial remission after first-line therapy. J Clin Oncol 28(8):1415–1421

    Article  PubMed  Google Scholar 

  175. Kobe C, Kuhnert G, Kahraman D, Haverkamp H, Eich HT, Franke M et al (2014) Assessment of tumor size reduction improves outcome prediction of positron emission tomography/computed tomography after chemotherapy in advanced-stage Hodgkin lymphoma. J Clin Oncol 32(17):1776–1781

    Google Scholar 

  176. Al-Nabhani KZ, Syed RF, Michopoulou S, Alkalbani J, Alkalbani JF, Afaq AF, Panagiotidis E, Meara C et al (2014) Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med 55(1):88–94

    Article  CAS  PubMed  Google Scholar 

  177. Stecco AA, Buemi F, Iannessi AA, Carriero AA, Gallamini A (2018) Current concepts in tumor imaging with whole-body MRI with diffusion imaging (WB-MRI-DWI) in multiple myeloma and lymphoma. Leuk Lymphoma 59(11):2546–2556

    Article  PubMed  Google Scholar 

  178. Herrmann K, Queiroz M, Huellner MW, de Galiza BF, Buck A, Schaefer N et al (2015) Diagnostic performance of FDG-PET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT. BMC Cancer 15:1002

    Article  PubMed  PubMed Central  Google Scholar 

  179. Martiat P, Ferrant A, Labar D, Cogneau M, Bol A, Michel C et al (1988) In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 29(10):1633–1637

    CAS  PubMed  Google Scholar 

  180. Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, Kozawa SM et al (1998) Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 39(10):1757–1762

    CAS  PubMed  Google Scholar 

  181. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336

    Article  CAS  PubMed  Google Scholar 

  182. Buchmann I, Neumaier B, Schreckenberger M, Reske S (2004) [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations—a pilot study. Cancer Biother Radiopharm 19(4):436–442

    CAS  PubMed  Google Scholar 

  183. Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66(22):11055–11061

    Article  CAS  PubMed  Google Scholar 

  184. Kasper B, Egerer G, Gronkowski M, Haufe S, Lehnert T, Eisenhut M et al (2007) Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma 48(4):746–753

    Article  PubMed  Google Scholar 

  185. Graf N, Herrmann K, den Hollander J, Fend F, Schuster T, Wester HJ et al (2008) Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol Imaging Biol 10(6):349–355

    Article  PubMed  Google Scholar 

  186. Stern PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119(1):29–34

    Article  CAS  PubMed  Google Scholar 

  187. Nuutinen J, Leskinen S, Lindholm P, Soderstrom KO, Nagren K, Huhtala S et al (1998) Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med 25(7):729–735

    Article  CAS  PubMed  Google Scholar 

  188. Kaste SC, Howard SC, McCarville EB, Krasin MJ, Kogos PG, Hudson MM (2005) 18F-FDG-avid sites mimicking active disease in pediatric Hodgkin’s. Pediatr Radiol 35(2):141–154

    Article  PubMed  Google Scholar 

  189. Kawase Y, Yamamoto Y, Kameyama R, Kawai N, Kudomi N, Nishiyama Y (2011) Comparison of 11C-methionine PET and 18F-FDG PET in patients with primary central nervous system lymphoma. Mol Imaging Biol 13(6):1284–1289

    Article  PubMed  Google Scholar 

  190. Rylova SN, Del PL, Klingeberg C, Tonnesmann R, Illert AL, Meyer PT et al (2016) Immuno-PET imaging of CD30-positive lymphoma using 89Zr-desferrioxamine-labeled CD30-specific AC-10 antibody. J Nucl Med 57(1):96–102

    Article  CAS  PubMed  Google Scholar 

  191. Rossi C, Kanoun S, Berriolo-Riedinger A, Dygai-Cochet I, Humbert O, Legouge C et al (2014) Interim 18F-FDG PET SUVmax reduction is superior to visual analysis in predicting outcome early in Hodgkin lymphoma patients. J Nucl Med 55(4):569–573

    Article  CAS  PubMed  Google Scholar 

  192. Specht L, Nordentoft AM, Cold S, Clausen NT, Nissen NI (1988) Tumor burden as the most important prognostic factor in early stage Hodgkin’s disease. Relations to other prognostic factors and implications for choice of treatment. Cancer 61(8):1719–1727

    Article  CAS  PubMed  Google Scholar 

  193. Song MK, Chung JS, Lee JJ, Jeong SY, Lee SM, Hong JS et al (2013) Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin’s lymphoma. Cancer Sci 104(12):1656–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kanoun S, Rossi C, Berriolo-Riedinger A, Dygai-Cochet I, Cochet A, Humbert O et al (2014) Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 41(9):1735–1743

    Article  PubMed  Google Scholar 

  195. Mettler J, Muller H, Voltin CA, Baues C, Klaeser B, Moccia A et al (2018) Metabolic tumour volume for response prediction in advanced-stage Hodgkin lymphoma. J Nucl Med 2018:pii: jnumed.118.210047

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gallamini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallamini, A., Cheson, B., Hutchings, M. (2020). Functional Imaging in Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics