Skip to main content

The Solanum Commersonii Genome Sequence

  • Chapter
  • First Online:
The Wild Solanums Genomes

Abstract

Solanum commersonii (2n = 2x = 24, 1EBN) is an important wild potato relative that has garnered attention for its high tolerance to cold and bacterial wilt. Although several efforts have been devoted to traits introgression from this wild species into the cultivated genepool, its genetic potential remains largely untapped. Now, the development of genomic resources for S. commersonii is gaining momentum, and we expect that they will soon impact the harnessing of this promising wild species in the release of new potato verities displaying introgression of traits from it. After illustrating the whole-genome structure and organization of S. commersonii, this chapter describes the main genomic resources developed so far and how they have been used to distill the diversity of several gene families playing key biological roles, such as RNA silencing mechanisms, secondary metabolites biosynthesis, and transcriptional factors. Finally, we provide a general overview of the breeding strategies used to exploit S. commersonii genetic potential and provide perspectives to develop superior stress-tolerant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43(2):101–108

    Article  CAS  PubMed  Google Scholar 

  • Aversano R, Contaldi F, Ercolano MR et al (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aversano R, Contaldi F, Adelfi MG et al (2017) Comparative metabolite and genome analysis of tuber-bearing potato species. Phytochemistry 137:42–51

    Article  CAS  PubMed  Google Scholar 

  • Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evolution Biol 27:2573–2584

    Article  CAS  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Ann Rev Plant Biol 65:505–530

    Article  CAS  Google Scholar 

  • Bolger A, Scossa F, Bolger ME et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardi T, D’Ambrosio E, Consoli D, Puite KJ, Ramulu KS (1993) Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. Theor Appl Genet 87:193–200

    Article  CAS  PubMed  Google Scholar 

  • Carputo D, Barone A, Cardi T et al (1997) Endosperm Balance Number manipulation for direct in vivo germplasm introgression to potato from a sexually isolated relative (Solanum commersonii Dun.). Proc Natl Acad Sci USA 94:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carputo D, Basile B, Cardi T, Frusciante L (2000) Erwinia resistance in backcross progenies of Solanum tuberosum X S. tarijense and S. tuberosum (+) S. commersonii hybrids. Potato Res 43:135–142

    Article  Google Scholar 

  • Chen Y-KH, Palta JP, Bamberg JB et al (1999) Expression of non-acclimated freezing tolerance and cold acclimation capacity in somatic hybrids between hardy wild Solanum species and cultivated potatoes. Euphytica 107:1–8

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Cho K-S, Cheon K-S, Hong S-Y et al (2016) Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum. Plant CEll Rep 35:2113–2123

    Article  CAS  PubMed  Google Scholar 

  • Cho KS, Cho JH, Im JS et al (2018) Mitochondrial genome sequence of tuber-bearing wild potato, Solanum commersonii Dunal. Mitochondr DNA B 3(1):198–199

    Google Scholar 

  • D’Amelia V, Aversano R, Batelli G et al (2014) High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant J 80:527–540

    Article  CAS  PubMed  Google Scholar 

  • D’Amelia V, Aversano R, Ruggiero A et al (2018) Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant Cell Environ 41(5):1038–1051

    Article  CAS  PubMed  Google Scholar 

  • Datema E, Mueller LA, Buels R et al (2008) Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC Plant Biol 8(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Ann Rev Plant Biol 61:593–620

    Article  CAS  Google Scholar 

  • Eimert K, Villand P, Kilian A, Kleczkowski LA (1996) Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues. Gene 170(2):227–232

    Article  CAS  PubMed  Google Scholar 

  • Esposito S, Aversano R, Bradeen JM et al. (2018a) Deep‐sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. Plant Biol.https://doi.org/10.1111/plb.12955

  • Esposito S, Aversano R, D’Amelia V et al. (2018b) Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. Planta 248(3):729–743

    Google Scholar 

  • Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R (2019). LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta 250(5), 1781–1787

    Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4(5):415–420

    Article  CAS  PubMed  Google Scholar 

  • Gaiero P, Mazzella C, Vilaró F et al. (2017) Pairing analysis and in situ hybridisation reveal autopolyploid-like behaviour in Solanum commersonii × S. tuberosum (potato) interspecific hybrids. Euphytica 213:137

    Google Scholar 

  • Gaiero P, Vaio M, Peters SA et al (2018) Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Ann Bot. https://doi.org/10.1093/aob/mcy186

    Article  PubMed Central  Google Scholar 

  • Geisler M, Wilczynska M, Karpinski S, Kleczkowski LA (2004) Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses. Plant Mol Biol 56(5):783–794

    Article  CAS  PubMed  Google Scholar 

  • González M, Galván G, Siri MI et al (2013) Resistencia a la marchitez bacteriana de la papa en Solanum commersonii. Agrociencia Uruguay 7:45–54

    Article  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD et al (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanneman RE, Bamberg JB (1986) Inventory of tuber bearing solanum species. University of Wisconsin, Madison USA

    Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L et al (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. P Natl A Sci 114(46):E9999–E10008

    Article  CAS  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London, p 259

    Google Scholar 

  • Heim MA, Jakoby M, Werber M et al (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747

    Article  CAS  PubMed  Google Scholar 

  • Hosaka K, Hanneman RE (1998) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense: 1. Detection of an S locus inhibitor (Sli) gene. Euphytica 99(3):191–197

    Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jansky SH (2006) Overcoming hybridization barriers in potato. Plant Breed 125:1–12

    Article  Google Scholar 

  • Jansky SH, Chung YS, Kittipadukal P (2014) M6: a diploid potato inbred line for use in breeding and genetics research. J Plant Regist 8(2):195–199

    Article  Google Scholar 

  • Jeon J, Baldrian P, Murugesan K, Chang YS (2011) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. J Microbiol Biotechn 5:318–332

    Google Scholar 

  • Jheng CF, Chen TC, Lin JY et al (2012) The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci 190:62–73

    Article  CAS  PubMed  Google Scholar 

  • Jung CS, Griffiths HM, De Jong DM et al (2009) The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet 120(1):45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim-Lee H, Moon JS, Hong YJ et al (2005) Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am J Potato Res 82(2):129–137

    Article  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laferriere LT, Helgeson JP, Allen C (1999) Fertile Solanum tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet 98:1272–1278

    Article  Google Scholar 

  • Lakhotia N, Joshi G, Bhardwaj AR et al (2014) Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biol 14:1–6

    Article  CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leisner CP, Hamilton JP, Crisovan E et al (2018) Genome sequence of M6, a diploid inbred clone of the high glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94:562–570

    Article  CAS  PubMed  Google Scholar 

  • Manrique-Carpintero NC, Tokuhisa JG, Ginzberg I, Holliday JA, Veilleux RE (2013) Sequence diversity in coding regions of candidate genes in the glycoalkaloid biosynthetic pathway of wild potato species. G3 Genes Genomes Genet 3:1467–1479.

    Google Scholar 

  • Matsui A, Nguyen A, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14(11):22642–22654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • Micheletto S, Boland R, Huarte M (2000) Argentinian wild diploid Solanum species as sources of quantitative late blight resistance. Theor Appl Genet 101:902–906

    Article  Google Scholar 

  • Palta JP, Simon G (1993) Breeding potential for improvement of freezing stress resistance: genetic separation of freezing tolerance, freezing avoidance, and capacity to cold acclimate. In: Li PH, Christersson L (eds) Advances in plant cold hardiness. CRC Press, Boca Raton, FL, pp 299–310

    Google Scholar 

  • Panchy N, Lehti-Shiu MD, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters SA, Datema E, Szinay D et al (2009) Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements. Plant J 58:857–869

    Article  CAS  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10(2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez F, Spooner DM (2009) Nitrate reductase phylogeny of potato (Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. Syst Bot 34:207–219

    Article  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol 138(3):1232–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ (2008) Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci 13(7):329–334

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y et al (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136(1):2734–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417

    Article  CAS  Google Scholar 

  • Siri MI, Galván GA, Quirici L et al (2009) Molecular marker diversity and bacterial wilt resistance in wild Solanum commersonii accessions from Uruguay. Euphytica 165(2):371–382

    Article  CAS  Google Scholar 

  • Song Z, Zhang L, Wang Y, Li H, Li S, Zhao H, Zhang H (2017) Constitutive expression of miR408 improves biomass and seed yield in Arabidopsis. Front Plant Sci 8:2114

    Article  PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    Article  CAS  PubMed  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Tiwari JK, Devi S, Ali N et al (2018) Progress in somatic hybridization research in potato during the past 40 years. Plant Cell Tiss Org 132(2):225–238

    Article  CAS  Google Scholar 

  • Torres GA, Gong Z, Iovene M et al. (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. G3-Genes Genom Genet 1:85–92

    Google Scholar 

  • Vega SE, Palta JP, Bamberg JB (2000) Variability in the rate of cold acclimation and deacclimation among tuber-bearing Solanum (potato) species. J Am Soc Hort Sci 125(2):205–211

    Article  Google Scholar 

  • Villano C, D’Amelia V, Esposito S, Adelfi MR, Contaldi F, Ferracane R, Vitaglione P, Aversano R, Carputo D (2020a) Genome-wide HMG family investigation and its role in glycoalkaloid accumulation in wild tuber-bearing Solanum commersonii. Life 10(4):37

    Google Scholar 

  • Villano C, Esposito S, D’Amelia V, Garramone R, Alioto D, Zoina A, Aversano R, Carputo D (2020b) WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep 10:7196

    Google Scholar 

  • Wang Y, Itaya A, Zhong X et al (2011) Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. Plant Cell 23:3185–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Pan S, Cheng S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga AP, Solé M, Lu H et al (2015) Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics 16(1):24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Carputo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aversano, R., D’Amelia, V., Esposito, S., Garramone, R., Villano, C., Carputo, D. (2021). The Solanum Commersonii Genome Sequence. In: Carputo, D., Aversano, R., Ercolano, M.R. (eds) The Wild Solanums Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30343-3_8

Download citation

Publish with us

Policies and ethics