Skip to main content

Application of Biotechnology

  • Chapter
  • First Online:
Beta maritima

Abstract

Modern genetic analyses are evolving quickly and have unprecedented ability to provide clarity and context to the genetic control of traits important for survival of crop wild relatives and sustainability of cropping systems. The ability to examine whole genomes at single nucleotide resolution complements the ongoing genetic marker approaches, allowing easily surveyed and inexpensive genetic marker surveys of germplasm and populations to be correlated with specific genes, and where known, to anticipate differences in regulation between wild and crop genes. Genome sequences allow this integration, and for sugar beet at least two high-quality reference genome assemblies are currently available. Such genome assemblies form the foundation of survey activities designed to identify genes controlling traits, examine the extent and distribution of genetic variation in the species, and assess completeness of germplasm collections. Genome archeology can reveal genetic responses to selection and perhaps predict germplasm accessions with higher probability of contributing traits useful in sustainable beet agriculture. Such genome-enabled investigations are only newly available and thus their potential will only be limited by availability of nucleotide sequence data coupled with geographic and phenotypic characterization of germplasm held in gene banks and breeding programs. Directed engineering for improvement of traits will require knowledge of their genetic control and assessment of their diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adetunji I, Willems G, Tschoep H, Bürkholz A, Barnes S, Boer M, Malosetti M, Horemans S, Eeuwijk F (2014) Genetic diversity and linkage disequilibrium analysis in elite sugar beet breeding lines and wild beet accessions. Theor Appl Genet 127:559–571

    Article  CAS  PubMed  Google Scholar 

  • Andrello M, Henry K, Devaux P, Desprez B, Manel S (2016) Taxonomic, spatial and adaptive genetic variation of Beta section Beta. Theor Appl Genet 129:257–271

    Article  CAS  PubMed  Google Scholar 

  • Andrello M, Henry K, Devaux P, Verdelet D, Desprez B, Manel S (2017) Insights into the genetic relationships among plants of Beta section Beta using SNP markers. Theor Appl Genet 130:1857–1866

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bartsch D, Ellstrand N (1999) Genetic evidence for the origin of Californian wild beets (genus Beta). Theor Appl Genet 99:1120–1130

    Google Scholar 

  • Biancardi E, Campbell LG, Skaracis GN, de Biaggi M (2005) Genetics and breeding of sugar beet. Science Publishers, Enfield (NH), USA

    Google Scholar 

  • Biancardi E, Tamada T (2016) Rhizomania. Springer, Heidelberg

    Book  Google Scholar 

  • Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar beet. In: Bradshaw JE (ed) Tuber and root crops, Handbook of Plant Breeding, vol 7. Springer, New York, pp 173–220

    Google Scholar 

  • Boudry P, Mörchen M, Saumitou-Laprade P, Vernet P, Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor Appl Genet 87:471–478

    Article  CAS  PubMed  Google Scholar 

  • Butterfass T (1964) Die chloroplastenzahlen in verschiedenartigen zellen trisomer zuckerruben (Beta vulgaris L.). Z Bot 52:46–77

    Google Scholar 

  • Capistrano-Gossmann GG, Ries D, Holtgrawe D, Minoche A, Kraft T, Frerichmann SLM, Rosleff Soerensen T, Dohm JC, Gonzalez I, Schilhabel M, Varrelmann M, Tschoep H, Uphoff H, Schutze K, Borchardt D, Toerjek O, Mechelke W, Lein JC, Schechert AW, Frese L, Himmelbauer H, Weisshaar B, Kopisch-Obuch FJ (2017) Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun 8:15708. https://doi.org/10.1038/ncomms15708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carsner E (1938) Wild beets in California. Proc Am Soc Sugar Beet Technol 1:79

    Google Scholar 

  • Dahlberg HW, Brewbaker HE (1948) A promising sugar beet hybrid of the Milpitas wild type x commercial. Proc Am Soc Sugar Beet Technol 5:175–178

    Google Scholar 

  • de Bock TSM (1986) The genus Beta: Domestication, taxonomy and interspecific hybridization for plant breeding. Acta Hort 182:335–343

    Google Scholar 

  • de Lucchi C, Stevanato P, Hanson LE, McGrath JM, Panella L, de Biaggi M, Broccanello C, Bertaggia M, Sella L, Concheri G (2017) Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet. Euphytica 213:71. doi:https://doi.org/10.1007/s10681-017-1859-7

  • Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–1201

    Article  CAS  Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article  CAS  PubMed  Google Scholar 

  • Fenárt S, Arnaud J, de Cauwer I, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. Theor Appl Genet 116:1063–1077

    Google Scholar 

  • Ford-Lloyd BV (1986) Infraspecific variation in wild and cultivated beets and its effect upon infraspecific classification. In: Styles BT (ed) Infraspecific classification of wild and cultivated plants, vol 29, Syst Assoc Spec, pp 331–334

    Google Scholar 

  • Ford-Lloyd BV, Hawkes JG (1986) Weed beets, their origin and classification. Acta Hort 82:399–404

    Article  Google Scholar 

  • Ford-Lloyd BV (2005) Sources of genetic variation, genus Beta. In: Biancardi E, Campbell L, Skaracis GN, de Biaggi M (eds) Genetics and breeding of sugar beet. Science Publishers, Enfield, New Hampshire, USA, pp 25–33

    Google Scholar 

  • Frese L, Desprez B, Ziegler D (2001) Potential of genetic resources and breeding strategies for base-broadening in Beta. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. FAO, IBPRGI jointly with CABI Publishing, Italy, pp 295–309

    Chapter  Google Scholar 

  • Frese L, Hannan R, Hellier B, Samaras S, Panella L (2009) Survey of Beta nana in Greece. In: Frese L, Germeier CU, Lipman E, Maggioni L (eds) Report of the ECP/GR Beta working group and world beta network. Third joint meeting 8–10 March 2006, Tenerife, Spain. Bioversity International, Rome, Italy

    Google Scholar 

  • Fugate KK, Fajardo D, Schlautman B, Ferrareze JP, Bolton MD, Campell LG, Wiesman E, Zalapa J (2014) Generation and characterization of a sugar beet transcriptome and transcript-based SSR markers. Plant Genome 7. doi:https://doi.org/10.3835/plantgenome2013.11.0038

  • Funk A, Galewski P, McGrath JM (2018) Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome. Plant J 95:659–671

    Article  CAS  Google Scholar 

  • Galewski P, McGrath M (2019) Quantifying genetic diversity in cultivated beet (Beta vulgaris) using a pooled population sequencing strategy. Plant and Animal Genome Meeting, Genomics of Gewnebanks. 12 Jan 2019. https://plan.core-apps.com/pag_2019/abstract/012b143a-73d1-437e-9f20-8e4821c2b5f7. Accessed 31 Mar 2019

  • Grimmer MK, Kraft T, Francis SA, Asher MJC (2008) QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breed 127:650–652

    Article  Google Scholar 

  • Hagihara E, Itchoda N, Habu Y, Iida S, Mikami T, Kubo T (2005) Molecular mapping of a fertility restorer gene for Owen cytoplasmic male sterility in sugar beet. Theor Appl Genet 111:250–255

    Article  CAS  PubMed  Google Scholar 

  • Halldén C, Ahrén D, Hjerdin A, Säll T, Nilsson NO (1998) No conserved homoeologous regions found in the sugar beet genome. J Sugar Beet Res 35:1–13

    Article  Google Scholar 

  • Hansen M, Kraft T, Christiansson M, Nilsson N-O (1999) Evaluation of AFLP in Beta. Theor Appl Genet 98:845–852

    Article  CAS  Google Scholar 

  • Harveson RM, Hanson LE, Hein GL (2009) Compendium of beet diseases and pests, 2nd edn. APS Press, St. Paul, Minnesota, USA

    Google Scholar 

  • Hatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargyle S, Hembd A, Gonzalez A, McGrath JM, Lloyd AM (2014) The beet Y locus is a co-opted anthocyanin MYB that regulates betalain pathway structural genes. Nat Genet 47:92–96

    Article  PubMed  CAS  Google Scholar 

  • Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM (2012) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44:816–820

    Article  CAS  PubMed  Google Scholar 

  • Heitkam T, Holtgrawe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T (2014) Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J 79:385–397

    Article  CAS  PubMed  Google Scholar 

  • Henry KB, Desprez B, Devaux B, Devaux PJ, Goudemand E, Guillaume O, Henry N, Mangin B, Pegot-Espagnet P, Willems G (2019) Discovery of genetic diversity of interest by comparing a progeny from (sugar beet elite x exotic) crosses with a sugar beet elite panel. Plant and Animal Genome Meeting, Sugar Beet Workshop, 12 Jan 2019. https://static.coreapps.net/pag-2019/handouts/3e2dbaad-f4c6-47fd-a9a4-78fcddc2ca21_1.pdf. Accessed 31 Mar 2019

  • Holtgrawe D, Sorensen TR, Viehover P, Schneider J, Schulz B, Borchardt D, Kraft T, Himmelbauer H, Weisshaar B (2014) Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris). PLoS ONE 9:e110113. https://doi.org/10.1371/journal.pone.0110113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma Y, Taguchi K, Hiyama H, Yui-Kurino R, Mikami T, Kubo T (2014) Molecular mapping of restorer-of-fertility 2 gene identified from a sugar beet (Beta vulgaris L. ssp. vulgaris) homozygous for the non-restoring restorer-of-fertility 1 allele. Theor Appl Genet 127:2567–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornsey KG, Arnold MH (1979) The origins of wild beet. Ann Appl Biol 92:279–285

    Article  Google Scholar 

  • Hunger S, Gaspero G, Möhring S (2003) Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta vulgaris L.). Genome 82:70–82

    Article  Google Scholar 

  • Jung C, Pillen K, Frese L, Fahr S, Melchinger A (1993) Phylogenetic-relationships between cultivated and wild species of the genus Beta revealed by DNA fingerprinting. Theor Appl Genet 86:449–457

    Article  CAS  PubMed  Google Scholar 

  • Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia 36:9–19

    Article  Google Scholar 

  • Keller W (1936) Inheritance of some major color types in beets. J Agric Res 52:27–38

    Google Scholar 

  • Khayamim S, Tavakkol Afshari R, Sadeghian SY, Poustini K, Rouzbeh F, Abbasi Z (2014) Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. J Agr Sci Tech 16:779–790

    Google Scholar 

  • Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T (2016) Repeat composition of CenH3-chromatin and H3K9me2-marked heterochromatin in sugar beet (Beta vulgaris). BMC Plant Biol 16:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurent V, Devaux P, Thiel T, Viard F, Mielordt S, Touzet P, Quillet M (2007) Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor Appl Genet 115:793–805

    Article  CAS  PubMed  Google Scholar 

  • Lein JC, Asbach K, Tian Y, Schulte D, Li C, Koch G, Jung C, Cai D (2007) Resistance gene analogues are clustered on Chromosome 3 of sugar beet and cosegregate with QTL for rhizomania resistance. Genome 50:61–71

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (2001) 50 years of plant speciation. Taxon 50:69–91

    Article  Google Scholar 

  • Levin DA (2004) Ecological speciation: crossing the divide. Syst Bot 29:807–816

    Article  Google Scholar 

  • Longden PC (1976) Annual beet: problems and prospects. Pestic Sci 7:422–425

    Article  CAS  Google Scholar 

  • Manel S, Andrello M, Henry K, Verdelet D, Darracq A, Guerin P-E, Desprez B, Devaux P (2018) Predicting genotype environmental range from genome– environment associations. Mol Ecol 27:2823–2833

    Article  CAS  PubMed  Google Scholar 

  • Mangin B, Sandron F, Henry K, Devaux B, Willems G, Devaux P, Goudemand E (2015) Breeding patterns and cultivated beets origins by genetic diversity and linkage disequilibrium analyses. Theor Appl Genet 128:2255–2271

    Article  PubMed  Google Scholar 

  • Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, Yui-Kurino R, Taguchi K, Tamagake H, Mikami T, Kubo T (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Ann Rev Plant Biol 68:485–512

    Article  CAS  Google Scholar 

  • McFarlane JS (1975) Naturally occurring hybrids between sugarbeet and Beta macrocarpa in the imperial valley of California. J Am Soc Sugar Beet Technol 18:245–251

    Article  Google Scholar 

  • McGrath J, Derrico C, Yu Y (1999) Genetic diversity in selected, historical US sugarbeet germplasm and Beta vulgaris ssp maritima. Theor Appl Genet 98:968–976

    Article  Google Scholar 

  • McGrath JM, Panella L (2019) Sugar beet breeding. In: Goldman I (ed) Plant breeding reviews, vol 42. pp 167–218

    Google Scholar 

  • McGrath JM (2011) Notice of release of EL56 sugar beet germplasm with high levels of tolerance to salinity during germination. USDA-ARS Germplasm Release

    Google Scholar 

  • McGrath JM, Jung C (2016) Chapter 16: use of polyploids, interspecific, and intergeneric wide hybrids in sugar beet improvement. In: Mason AS (ed) Polyploidy and interspecific hybridization in crop improvement. Science Publishers (CRC Press), Boca Raton, FL, pp 408–420

    Google Scholar 

  • McGrath JM, Townsend B, Bogden B, Wittendorp J, Davenport K, Daligault H, Johnson S, Hastie A, Bocklandt S, Darracq A, Willems G, Barnes S, Galewski P, Funk A, Pulman J, Lui T, Childs K (2016) Towards a gold reference assembly for sugar beet ‘C869’. Annual beet sugar development foundation research report. Beet Sugar Development Foundation (Available from the authors), Denver, Colorado

    Google Scholar 

  • McGrath JM, Panella LW, Frese L (2011) Beta. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, industrial crops. Springer, Heidelberg, pp 1–28

    Google Scholar 

  • McGrath JM, Saccomani M, Stevanato P, Biancardi E (2007) Beet. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5, Vegetables. Springer, New York, pp 191–207

    Google Scholar 

  • McGrath JM, Drou N, Waite D, Swarbreck D, Mutasa-Gottgens E, Barnes S, Townsend B (2013) The ‘C869’ sugar beet genome: a draft assembly. International Plant & Animal Genome XXI. W735

    Google Scholar 

  • Minoche AE, Dohm DC, Schneider J, Holtgräwe D, Viehöver P, Montfort M, Sörensen TR, Weisshaar B, Himmelbauer H (2015) Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol 16:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norouzi P, Sabzehzari M, Stevanato P (2015) Efficiency of some molecular markers linked to rhizomania resistance gene (Rz1) for marker assisted selection in sugar beet. J Crop Sci Biotech 18:319–323

    Article  Google Scholar 

  • Norouzi P, Stevanato P, Mahmoudi SB, Fasahat P, Biancardi E (2017) Molecular progress in sugar beet breeding for resistance to biotic stresses in sub-arid conditions-current status and perspectives. J Crop Sci Biotech 20:99–105

    Article  Google Scholar 

  • Ober ES, Luterbacher MC (2002) Genotypic variation for drought tolerance in Beta vulgaris. Ann Bot 89:917–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Ober ES, Clark CJA, Le Bloa M, Royal A, Jaggard KW, Pidgeon JD (2004) Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crops Res 90:213–234

    Article  Google Scholar 

  • Paesold S, Borchart D, Schmidt T, Dechyeva D (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J 72:600–611

    Article  CAS  PubMed  Google Scholar 

  • Panella L, Fenwick AL, Stevanato P, Eujayl I, Strausbaugh CA, Richardson KL, Wintermantel WM, Lewellen RT (2018) Registration of FC1740 and FC1741 multigerm, rhizomania-resistant sugar beet germplasm with resistance to multiple diseases. J Plant Regist 12:257–263

    Google Scholar 

  • Panella L, Lewellen R (2007) Broadening the genetic base of sugar beet: Introgression from wild relatives. Euphytica 154: 383–400

    Google Scholar 

  • Panella L, Lewellen RT, Hanson LE (2008) Breeding for multiple disease resistance in sugar beet: registration of FC220 and FC221. J Plant Regist 2:146–155

    Google Scholar 

  • Pin PA, Zhang W, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJL, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Curr Biol 22:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Rajabi A, Ober ES, Griffiths H (2009) Genotypic variation for water use efficiency, carbon isotope discrimination, and potential surrogate measures in sugar beet. Field Crops Res 112:172–181

    Article  Google Scholar 

  • Ries D, Holtgräwe D, Viehöver P, Weisshaar B (2016) Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC Genom 17:236. https://doi.org/10.1186/s12864-016-2566-9

    Article  CAS  Google Scholar 

  • Rozema J, Cornelisse D, Zhang Y, Li H, Bruning B, Katschnig D, Broekman R, Ji B, van Bodegom P (2015) Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. AoB PLANTS 7:plu083. doi:https://doi.org/10.1093/aobpla/plu083

  • Saccomani M, Stevanato P, Trebbi D, McGrath JM, Biancardi E (2009) Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 169:19–29

    Article  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Article  Google Scholar 

  • Scholten O, de Bock T, Klein-Lankhorst RM, Lange W (1999) Inheritance of resistance to beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor Appl Genet 99:740–746

    Google Scholar 

  • Scholten O, Jansen RC, Keizer L, de Bock T, Lange W (1996) Major genes for resistance to beet necrotic yellow vein virus (BNYVV) in Beta vulgaris. Euphytica 91:331–339

    Google Scholar 

  • Schondelmaier J, Jung C (1997) Chromosomal assignment of the nine linkage groups of sugar beet (Beta vulgaris L.) using primary trisomics. Theor Appl Genet 95:590–596

    Article  Google Scholar 

  • Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, Weisshaar B, Himmelbauer H, Schmidt T (2016) Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. Plant J 85:229–244

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga AM, Berens ML, Tsuda K, Argueso CT (2017) Towards engineering of hormonal crosstalk in plant immunity. Curr Opin Plant Biol 38:164–172

    Google Scholar 

  • Stevanato P, Trebbi D, Panella L, Richardson K, Broccanello C, Pakish L, Fenwick AL, Saccomani M (2014) Identification and validation of a SNP marker linked to the gene HsBvm-1 for nematode resistance in sugar beet. Plant Mol Biol Rep 33:474–479

    Google Scholar 

  • Taguchi K, Okazaki K, Takahashi H, Kubo T, Mikami T (2010) Molecular mapping of a gene conferring resistance to Aphanomyces root rot (black root) in sugar beet (Beta vulgaris L.). Euphytica 173:409–418

    Article  CAS  Google Scholar 

  • Taguchi K, Kubo T, Takahashi H, Abe H, Paterson AH (2011) Identification and precise mapping of resistant QTLs of Cercospora leaf spot resistance in sugar beet (Beta vulgaris L.). G3: Genes Genomes Genet 1:283–291

    Article  Google Scholar 

  • Würschum T, Kraft T (2015) Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet. Heredity 114:281–290

    Article  PubMed  Google Scholar 

  • Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C, Reif JC (2011) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet 123:1121–1131

    Article  PubMed  Google Scholar 

  • Yolcu S, Ozdemir F, Güler A, Bor M (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewski F, Schmidt M, van Lijsebettens M, Schmidt T (2017) DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.). Plant J 90:1156–1175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mitchell McGrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGrath, J.M., Stevanato, P. (2020). Application of Biotechnology. In: Biancardi, E., Panella, L., McGrath, J. (eds) Beta maritima. Springer, Cham. https://doi.org/10.1007/978-3-030-28748-1_10

Download citation

Publish with us

Policies and ethics