Skip to main content

History, Progress, and Development of Electrocatalysis

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

This chapter reviews the history, the progress, development and achievement of electrocatalysis. We introduce some practical examples for electrochemical reactions as CO2 reduction, hydrogen evolution and oxygen reduction reaction. Some examples of these anchored reaction using differents electrocatalysts cited metal oxide, carbon based material, alloy material, noble and precious metal, layered electrocatalytic materials, platinum-based electrocatalysts and electrocatalysts without Pt are cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Energy Information Administration. International energy statistics. U.S. Department of Energy, Washington, DC. www.eia.doe.gov

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  3. Alonso-Vante N (2003) In: Wieckowski A, Savinova ER, Constantinos VG (eds) Catalysis and electrocatalysis at nanoparticle surface. Basel, New York, p 931

    Google Scholar 

  4. Alonso-Vante N (2003) In: Vielstich W, Lamn A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, Chichester, UK, p 534

    Google Scholar 

  5. Vaona A (2016) The effect of renewable energy generation on import demand. Renew Energy 86:354–359. https://doi.org/10.1016/j.renene.2015.07.062

    Article  Google Scholar 

  6. Kauder B, Potrafke N, Ursprung H (2018) Behavioral determinants of proclaimed support for environment protection policies. Eur J Polit Econ 54:26–41

    Article  Google Scholar 

  7. Alonso-Vante N, Bogdanoff P, Tributsch H (2000) On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte. J Catal 190:240–246. https://doi.org/10.1006/jcat.1999.2728

    Article  CAS  Google Scholar 

  8. Alonso-Vante N, Borthen P, Fieber-Erdmann M, Strehblow HH, Holub-Krappe E (2000) In situ grazing incidence X-ray absorption study of ultra-thin RuxSey cluster-like electrocatalyst layers. Electrochim Acta 45:4227–4236. https://doi.org/10.1016/S0013-4686(00)00555-7

    Article  CAS  Google Scholar 

  9. Friedlein JT, McLeod RR, Rivnay J (2018) Device physics of organic electrochemical transistors. Org Electron 63:398–414. https://doi.org/10.1016/j.orgel.2018.09.010

    Article  CAS  Google Scholar 

  10. Lohse C (2018) Environmental impact by hydrogeothermal energy generation in low-enthalpy regions. Renew Energy 128:509–519. https://doi.org/10.1016/j.renene.2017.06.030

    Article  Google Scholar 

  11. Petralia S, Sciuto EL, Messina MA, Scandurra A, Mirabella S, PrioloF ConociS (2018) Miniaturized and multi-purpose electrochemical sensing device based on thin Ni oxides. Sens Actuators B: Chem 263:10–19. https://doi.org/10.1016/j.snb.2018.02.114

    Article  CAS  Google Scholar 

  12. Zhou M, Xu Y, Lei Y (2018) Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today 20:33–57. https://doi.org/10.1016/j.nantod.2018.04.002

    Article  CAS  Google Scholar 

  13. Kudr J, Zitka O, Klimanek M, Vrba R, Adam V (2017) Microfluidic electrochemical devices for pollution analysis–A review. Sens Actuators B Chem 246:578–590

    Google Scholar 

  14. Dai L, Xue Y, Qu L, Choi H-J, Baek J-B (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892. https://doi.org/10.1021/cr5003563

    Article  CAS  Google Scholar 

  15. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113. https://doi.org/10.1021/ja505791r

    Article  CAS  Google Scholar 

  16. Pei Z, Gu J, Wang Y, Tang Z, Liu Z, Huang Y, Huang Y, Zhao J, Chen Z, Zhi C (2017) Component matters: paving the roadmap toward enhanced electrocatalytic performance of graphitic C3N4-based catalysts via atomic tuning. ACS Nano 11(6):6004–6014. https://doi.org/10.1021/acsnano.7b01908

    Article  CAS  Google Scholar 

  17. Grubb WT (1963) In: 17th annual power sources conference, Atlantic City

    Google Scholar 

  18. Horiuti J, Polanyi M (1935) Grundlinieneiner Theorie der Protonübertragung. Acta Phys Chim USSR 2:505

    Google Scholar 

  19. Halder A, Zhang MW, Chi QJ (2016) Electrocatalytic applications of graphene–metal oxide nanohybrid materials. In: Advanced catalytic materials: photocatalysis and other current trends. InTech Open Access Publishers, pp 379–413 (chapter 14)

    Google Scholar 

  20. Banbur-Pawlowska S, Mech K, Kowalik R, Zabinski P (2016) Analysis of electrodeposition parameters influence on cobalt deposit roughness. Appl Surf Sci 388:805–808. https://doi.org/10.1016/j.apsusc.2016.04.005

    Article  CAS  Google Scholar 

  21. Bizon N, Thounthong P (2018) Fuel economy using the global optimization of the Fuel Cell Hybrid Power Systems. Energy Convers Manag 173:665–678. https://doi.org/10.1016/j.enconman.2018.08.015

    Article  Google Scholar 

  22. Gul T, Bischoff R, Permentier HP (2015) Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs. TrAC Trends Anal Chem 70:58–66. https://doi.org/10.1016/j.trac.2015.01.016

    Article  CAS  Google Scholar 

  23. Lee JM, Jung KK, Ko JS (2016) Formation of nickel microcones by using an electrodeposition solution containing H3BO3. Curr Appl Phys 16:261–266. https://doi.org/10.1016/j.cap.2015.12.010

  24. Liu X, Lillehoj PB (2017) Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers. Biosens Bioelectron 98:189–194. https://doi.org/10.1016/j.bios.2017.06.053

    Article  CAS  Google Scholar 

  25. Roghabadi FA, Ahmadi N, Ahmadi V, Carlo AD, Aghmiuni KO, Tehrani AS, Ghoreishi FS, Payandeh M, Fumani NMR (2018) Bulk heterojunction polymer solar cell and perovskite solar cell: concepts, materials, current status, and opto-electronic properties. Sol Energy 173:407–424. https://doi.org/10.1016/j.solener.2018.07.058

    Article  CAS  Google Scholar 

  26. Zhao N, Fabre B, Bobadova-Parvanova P, Fronczek FR, Vicente MGH (2017) Synthesis and electropolymerization of a series of 2,2′-(ortho-carboranyl)bisthiophenes. J Organomet Chem 828:157–165. https://doi.org/10.1016/j.jorganchem.2016.11.029

    Article  CAS  Google Scholar 

  27. Bandarenka AS, Koper MTM (2013) Structural and electronic effects in heterogeneous electrocatalysis: toward a rational design of electrocatalysts. J Catal 308:11–24. https://doi.org/10.1016/j.jcat.2013.05.006

    Article  CAS  Google Scholar 

  28. Bonde J, Moses PG, Jaramillo TF, Norskov JK, Chorkendorff I (2008) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219–231. https://doi.org/10.1039/B803857K

    Article  CAS  Google Scholar 

  29. Bockris O’M, Srinivasan S (1969) Fuel Cells: their electrochemistry, McGraw-Hill, New York

    Google Scholar 

  30. Whittaker ET (1951) A history of the theories of ether and electricity, vol 1. Nelson, London, p 4. http://www.famousscientists.org/alessandro-volta/

  31. Volta AGAA (1745–1827). Royal Netherlands Academy of Arts and Sciences. Retrieved 20 Jul 2015

    Google Scholar 

  32. Lefrou P, Fabry JC (2009) Poignet electrochemistry. The basics with examples. Springer, pp 2–6

    Google Scholar 

  33. Cheney M (2001) [1981] Tesla: man out of time

    Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  35. American Chemical Society. National Historic Chemical Landmarks. Thomas Edison, Chemist. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/thomas-edison.html

  36. Nernst WZ (1888) Zur kinetik der in losung befindlichen korper. 1. Theori der diffusion. Z Phys Chem 2:613–637

    Google Scholar 

  37. Sur UK (2012) Recent Trend in Electrochemical Science and Technology, pp 1–303

    Google Scholar 

  38. Nernst W (1889) Sitzungsber preuss Akad Wiss 83–95; Nernst W (1889) Z Phys Chem 4:129–181

    Google Scholar 

  39. Haber F (1898) Grundriss der technischen Elektrochemie auf theoretischer Grundlage. http://books.google.com/books?id=ViVKAAAAMAAJ&oe=UTF-8

  40. Cao A, Wieckowski J, Inukai N, Alonso-Vante (2006) Oxygen reduction reaction on ruthenium nanoparticles modified with selenium and sulfur. J. Electrochem. Soc. 153:A869–A874. https://doi.org/10.1149/1.2180709

  41. Millikan RA [1868–1953] (1959) A biographical memoir by L. A. Du Bridge and Paul A. Epstein

    Google Scholar 

  42. The Nobel Prize in Chemistry 1959. Nobelprize.org. Nobel Media AB 2014. 2 Feb 2017

    Google Scholar 

  43. Shikata Masuzo (1925) Conception cells and electrolysis of sodium ethoxide solutions. Trans Faraday Soc 19:24. https://doi.org/10.1039/TF9241900721

    Article  Google Scholar 

  44. Brock W (1993) The Norton history of chemistry. Norton, New York

    Google Scholar 

  45. Nobel Prize for Chemistry Prof. Arne Tiselius (1948). Nature 162:766. https://doi.org/10.1038/162766b0

  46. Mao J, Wang Y, Zheng Z, Deng D (2018) The rise of two-dimensional MoS2 for catalysis. Front Phys 13:138118. https://doi.org/10.1007/s11467-018-0812-0

    Article  Google Scholar 

  47. Xiong J, Di J, Li H (2018) Atomically thin 2D multinary nanosheets for energy-related photo. Adv Sci 5:180024. https://doi.org/10.1002/advs.201800244

    Article  CAS  Google Scholar 

  48. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D (2017) Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544:80–83. https://doi.org/10.1038/nature21672

  49. Zhang Y, Ji Q, Han GF, Ju J, Shi J, Ma D, Sun J, Zhang Y, Li M, Lang XY, Zhang Y, Liu Z (2014) Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications. ACS Nano 8:8617–8624. https://doi.org/10.1021/nn503412w

    Article  CAS  Google Scholar 

  50. Boudjemaa A, Popescu I, Juzsakova T, Kebir M, Helaili N, Bachari K, Marcu I-C (2016) M-substituted (M = Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. Int J Hydrogen Energy 41:11108–11118

    Article  CAS  Google Scholar 

  51. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215–230. https://doi.org/10.1002/adma.201502696

    Article  CAS  Google Scholar 

  52. Boudjemaa A, Bouarab R, Saadi S, BougueliaA Trari M (2009) Photo electrochemical H2-generation over Spinel FeCr2O4 in X2− solutions (X2− = S2− and SO32−. Appl Energy 86:1080–1086

    Article  CAS  Google Scholar 

  53. Royer ME (1870) Réduction de l’acide carbonique en acide formique. Compt. Rend. 1870:731–732

    Google Scholar 

  54. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Modern aspects of electrochemistry. Springer, New York, pp 89–189. https://doi.org/10.1007/978-0-387-49489-0_3

  55. Haynes LV, Sawyer DT (1967) Electrochemistry of carbon dioxide in dimethyl sulfoxide at gold and mercury electrodes. Anal Chem 39(3):332–338. https://doi.org/10.1021/ac60247a013

    Article  CAS  Google Scholar 

  56. Paik W, Andersen TN, Eyring H (1969) Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochim Acta 14(12):1217–1232

    Article  CAS  Google Scholar 

  57. Bewick A, Greener GP (1970) The electroreduction of CO2 to glycolate on a lead cathode. Tetrahedron Lett 11(5):391–394

    Google Scholar 

  58. Eggins BR, Ennis C, Mc Connell R, Spence M (1997) Improved yields of oxalate, glyoxylate and glycolate from the electrochemical reduction of carbon dioxide in methanol. J Appl Electrochem 27:706–712. https://doi.org/10.1023/A:1018444022321

    Article  CAS  Google Scholar 

  59. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99. https://doi.org/10.1039/B804323J

    Article  CAS  Google Scholar 

  60. Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine) nickel. J Chem Soc Chem Commun 15:636–637. https://doi.org/10.1039/C39750000636

    Article  Google Scholar 

  61. Darensbourg DJ, Rokicki A, Darensbourg MY (1981) Facile reduction of carbon dioxide by anionic Group 6b metal hydrides. Chemistry relevant to catalysis of the water-gas shift reaction. J Am Chem Soc 103(11):3223–3224. https://doi.org/10.1021/ja00401a055

  62. Frese KW, Jr Leach S (1985) Electrochemical reduction of carbon dioxide to methane, methanol, and CO on Ru electrodes. J Electrochem Soc 132(1):259–260. https://doi.org/10.1149/1.2113780

    Article  CAS  Google Scholar 

  63. Canfield D, Frese KW Jr (1983) Reduction of carbon dioxide to methanol on n- and p-GaAs and p-InP. Effect of crystal face, electrolyte and current density. J Electrochem Soc 130(8):1772–1773. https://doi.org/10.1149/1.2120090

  64. Summers DP, Leach S, Jr Frese (1986) The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials. J Electroanal Chem Interfacial Electrochem 205(1–2):219–232

    Article  CAS  Google Scholar 

  65. Hori Y, Suzuki S (1983) Electrolytic reduction of bicarbonate ion at a mercury electrode. J Electrochem Soc 130(12):2387–2390. https://doi.org/10.1149/1.2119593

    Article  CAS  Google Scholar 

  66. Firmiano EGS, Cordeiro MAL, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC, Leite ER (2012) Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem Commun 48(62):7687–7689. https://doi.org/10.1039/C2CC33397J

    Article  CAS  Google Scholar 

  67. Hori Y, Kikuchi K, Murata A, Suzuki S (1986) production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogen carbonate solution. Chem Lett 15:897–898. https://doi.org/10.1246/cl.1986.897

    Article  Google Scholar 

  68. Lim RJ, Xie M, SkJM Lee JM, Fisher A, Wang X, Lim KH (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180. https://doi.org/10.1016/j.cattod.2013.11.037

    Article  CAS  Google Scholar 

  69. Frese KW Jr (1993) In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, London, New York, Tokyo, pp 145–216

    Google Scholar 

  70. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition metal catalysts: a molecular solution to a global challenge? (Angew. Chem. Int. Ed. 37/2011). Angew Chem Int Ed 50(37):8510–8537. https://doi.org/10.1002/anie.201104738

  71. Ikeda S, Shiozaki S, Susuki J, Ito K, Noda H (1998) Electroreduction of CO2 using Cu/Zn oxides loaded gas diffusion electrodes. In: Advances in chemical conversions for mitigating carbon dioxide, proceedings of the fourth international conference on carbon dioxide utilization, pp 225–230. https://doi.org/10.1016/s0167-2991(98)80748-9

  72. Inglis J, MacLean BJ, Pryce MT, Vos JG (2012) Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord Chem Rev 256(21–22):2571–2600. https://doi.org/10.1016/j.ccr.2012.05.002

  73. Eggins BR, Bennett EM, McMullan EA (1996) Voltammetry of carbon dioxide. Part 2. Voltammetry in aqueous solutions on glassy carbon. J Electroanal Chem 408:165–171. https://doi.org/10.1016/0022-0728(96)04590-1

    Article  Google Scholar 

  74. Schiffrin DJ (1973) Application of the photo-electrochemical effect to the study of the electrochemical properties of radicals: CO2 and CH3. Faraday Discuss Chem Soc 56:75–95. https://doi.org/10.1039/DC9735600075

    Article  CAS  Google Scholar 

  75. Hori Y, Suzuki S (1982) Electrolytic reduction of carbon dioxide at mercury electrode in aqueous solution. Bull Chem Soc Jpn 55(3):660–665. https://doi.org/10.1246/bcsj.55.660

    Article  CAS  Google Scholar 

  76. Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys. Electrocatalysis 3(2):139–146. https://doi.org/10.1007/s12678-012-0095-0

    Article  CAS  Google Scholar 

  77. Ishimaru S, Shiratsuchi R, Nogami G (2000) Pulsed electroreduction of CO2 on Cu/Ag alloy electrodes. J Electrochem Soc 147(5):1864–1867. https://doi.org/10.1149/1.1393448

    Article  CAS  Google Scholar 

  78. Kudo K, Komatsu K (1999) Selective formation of methane in reduction of CO2 with water by Raney alloy catalyst. J Mol Catal A: Chem 145(1–2):257–264. https://doi.org/10.1016/S1381-1169(99)00014-X

  79. Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17(6):1159–1170. https://doi.org/10.1007/BF01023599

  80. Hara K, Sakata T (1997) Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J Electrochem Soc 144(2):539–545. https://doi.org/10.1149/1.1837445J

    Article  CAS  Google Scholar 

  81. Hara K, Sakata T (1997) Large current density CO2 reduction under high pressure using gas diffusion electrodes. Bull Chem Soc Jpn 70(3):571–576. https://doi.org/10.1246/bcsj.70.571

  82. Machunda RL, Ju H, Lee J (2011) Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Curr Appl Phys 11(4):986–988. https://doi.org/10.1016/j.cap.2011.01.003

    Article  Google Scholar 

  83. Machunda RL, Lee J, Lee J (2010) Microstructural surface changes of electrodeposited Pb on gas diffusion electrode during electroreduction of gas-phase CO2. Surf Interface Anal 42(6–7):564–567. https://doi.org/10.1002/sia.3245

  84. Tryk DA, Yamamoto T, Kokubun M, Hirota K, Hashimoto K, Okawa M, Fujishima A (2001) Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)2·− dimer radical anion. Appl Organomet Chem 15(2):113–120. https://doi.org/10.1002/1099-0739(200102)15:2%3c113::AID-AOC105%3e3.0.CO;2-1

  85. Yamamoto T, Tryk DA, Hashimoto K, Fujishima A, Okawa M (2000) Electrochemical reduction of CO2 in the micropores of activated carbon fibers. J Electrochem Soc 147(9):3393–3400. https://doi.org/10.1149/1.1393911

    Article  CAS  Google Scholar 

  86. Ikeda S, Ito T, Azuma K, Ito K, Noda H (1995) Electrochemical mass reduction of carbon-dioxide using Cu-loaded gas-diffusion electrodes. 1. Preparation of electrode and reduction products. Denki Kagaku 63:303–309

    Google Scholar 

  87. Cook RL, MacDuff RC, Sammells AF (1988) On the electrochemical reduction of carbon dioxide at in situ electrodeposited copper. J Electrochem Soc 135(6):1320–1326. https://doi.org/10.1149/1.2095972

    Article  CAS  Google Scholar 

  88. Furuya N, Yamazaki T, Shibata M (1997), High performance Ru Pd catalysts for CO2 reduction at gas-diffusion electrodes. J Electroanal Chem 431(1):39–41. https://doi.org/10.1016/S0022-0728(97)00159-9

  89. Ikeda S, Ito K, Noda H (2009) AIP Conf Proc 1136(1):108–113. https://doi.org/10.1063/v1136.frontmatter

  90. Schwartz M, Cook RL, Kehoe VM, MacDuff RC, Patel J, Sammells AF (1993) Carbon dioxide reduction to alcohols using perovskite type electrocatalysts. J Electrochem Soc 140(3):614–618. https://doi.org/10.1149/1.2056131

    Article  CAS  Google Scholar 

  91. Mignard D, Barik R C, Bharadwaj AS, Pritchard CL, Ragnoli M, Cecconi F, Miller H, Yellowlees LJ (2014) Revisiting strontium-doped lanthanum cuprate perovskite for the electrochemical reduction of CO2. J CO2 Utiliz 5:53–59. https://doi.org/10.1016/j.jcou.2013.12.006

  92. Bowden FP, Rideal E (1928) The electrolytic behaviour of thin films. Part I. Hydrogeneral. Proc Roy Soc A120:59–79

    Article  Google Scholar 

  93. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102. https://doi.org/10.1126/science.1141483

    Article  CAS  Google Scholar 

  94. Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Norskov JK (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26. https://doi.org/10.1149/1.1856988J

    Article  CAS  Google Scholar 

  95. Huang X, Zeng ZY, Bao SY, Wang MF, Qi XY, Fan ZX, Zhang H (2013) Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun 4(4):1444. https://doi.org/10.1038/ncomms2472

    Article  CAS  Google Scholar 

  96. Beer HBS (1968) African Pat. Act No. 1952, 59

    Google Scholar 

  97. Hine F, Tilak BV, Denton JM, Lisius JD (eds) (1989) Performances of electrodes for industrial electrochemical processes. Electrochemical Society, Pennington, NJ

    Google Scholar 

  98. Kita H (1966) Periodic variation of exchange current density of hydrogen electrode with atomic number and reaction mechanism. J Electrochem Soc 113:1095–1111

    Article  CAS  Google Scholar 

  99. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi, QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473. https://doi.org/10.1021/cr1002326

  100. Hayfield PCS (1998) Development of the noble metal/oxide coated titanium electrode. Part II: The move from platinum/iridium to ruthemum oxide electrocatalysts. Platin Met Rev 42(2):46–55

    CAS  Google Scholar 

  101. Trasatti S (1994) In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials. VCH, New York

    Google Scholar 

  102. Boodts JCF, Trasatti S (1989) Hydrogen evolution on iridium oxide cathodes. J Appl Electrochem 19:255–262. https://doi.org/10.1007/BF01062309

    Article  CAS  Google Scholar 

  103. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36:225–241. https://doi.org/10.1016/0013-4686(91)85244-2

    Article  CAS  Google Scholar 

  104. Veggetti E, Kodintsev IM, Trasatti S (1992) Hydrogen evolution on oxide electrodes: Co3O4 in alkaline solution. J Electroanal Chem 339:255–268. https://doi.org/10.1016/0022-0728(92)80456-E

    Article  CAS  Google Scholar 

  105. Krstajic N, Trasatti S (1995) Cathodic behavior of RuO2 doped Ni/Co3O4 electrodes in alkaline solutions: surface characterization. J Electrochem Soc 142:2675–2681. https://doi.org/10.1149/1.2050073

    Article  CAS  Google Scholar 

  106. Krstajic N, Trasatti S (1998) Cathodic behaviour of RuO2-doped Ni/Co3O4 electrodes in alkaline solutions: hydrogen evolution. J Appl Electrochem 28:1291–1297. https://doi.org/10.1023/A:1003444110172

  107. Chen L, Guay D, Lasia A (1996) Kinetics of the hydrogen evolution reaction on RuO2 and IrO2 oxide electrodes in H2SO4 solution: an AC impedance study. J Electrochem Soc 143:3576–3584. https://doi.org/10.1149/1.1837255

    Article  CAS  Google Scholar 

  108. Kodintsev IM, Trasatti S (1994) Electrocatalysis of H2 evolution on RuO2 + IrO2 mixed oxide electrodes. Electrochim Acta 39:1803–1808. https://doi.org/10.1016/0013-4686(94)85168-9

    Article  CAS  Google Scholar 

  109. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  110. Wang TY, Liu L, Zhu ZW, Papakonstantinou P, Hu JB, Liu HY, Li MX (2013) Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ Sci 6(2):625–633. https://doi.org/10.1039/C2EE23513G

  111. Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299. https://doi.org/10.1021/ja201269b

    Article  CAS  Google Scholar 

  112. Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. 1. J Electroanal Chem 81(1):97–111. https://doi.org/10.1016/S0022-0728(77)80363-X

  113. Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition-metal chalcogenides. Prog Surf Sci 29(1–2):1–167. https://doi.org/10.1016/0079-6816(88)90015-9

    Article  CAS  Google Scholar 

  114. Chang YH, Lin CT, Chen TY, Hsu C, Lee YH, Zhang WJ, Wei KH, Li LJ (2013) Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater 25(5):756–760. https://doi.org/10.1002/adma.201202920

    Article  CAS  Google Scholar 

  115. Hinnemann B, Moses PG, Bonde J, Jorgensen KP, Nielsen JH, Horch S, Chorkendorff I, Norskov JK (2005) Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309. https://doi.org/10.1021/ja0504690

    Article  CAS  Google Scholar 

  116. Karunadasa HI, Montalvo E, Sun YJ, Majda M, Long JR, Chang CJ (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702. https://doi.org/10.1126/science.1215868

    Article  CAS  Google Scholar 

  117. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275. https://doi.org/10.1038/nchem.1589

    Article  Google Scholar 

  118. Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219–231

    Google Scholar 

  119. Kibsgaard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11(11):963–969. https://doi.org/10.1038/nmat3439

  120. Lu Z, Zhang H, Zhu W, Yu X, Kuang Y, Chang Z, Lei X, Sun X (2013) In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chem Commun 49(68):7516–7518. https://doi.org/10.1039/C3CC44143A

    Article  CAS  Google Scholar 

  121. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li LS, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277. https://doi.org/10.1021/ja404523s

    Article  CAS  Google Scholar 

  122. Merki D, Vrubel H, Rovelli L, Fierro S, Hu X (2012) Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3(8):2515–2525. https://doi.org/10.1039/C2SC20539D

    Article  CAS  Google Scholar 

  123. Yan Y, Ge X, Liu Z, Wang JY, Lee JM, Wang X (2013) Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5(17):7768–7771. https://doi.org/10.1039/C3NR02994H

    Article  CAS  Google Scholar 

  124. Yu YF, Huang SY, Li YP, Steinmann SN, Yang WT, Cao LY (2014), Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14(2):553–558. https://doi.org/10.1021/nl403620g

  125. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed 53:5427–5430. https://doi.org/10.1002/anie.201402646

    Article  CAS  Google Scholar 

  126. Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49:6656–6658. https://doi.org/10.1039/c3cc43107j

    Article  CAS  Google Scholar 

  127. Hellstern TR, Benck JD, Kibsgaard J, Hahn C, Jaramillo TF (2016) Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv Energy Mater 6:1501758. https://doi.org/10.1002/aenm.201501758

    Article  CAS  Google Scholar 

  128. Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8:11101–11107. https://doi.org/10.1021/nn5048553

    Article  CAS  Google Scholar 

  129. Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed 53:12855–12859. https://doi.org/10.1002/anie.201406848

  130. Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:14433–14437. https://doi.org/10.1002/anie.201408222

    Article  CAS  Google Scholar 

  131. Laursen AB, Patraju KR, Whitaker MJ, Retuerto M, Sarkar T, Yao N, Ramanujachary KV, Greenblatt M, Dismukes GC (2015) Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ Sci 8:1027–1034. https://doi.org/10.1039/C4EE02940B

    Article  CAS  Google Scholar 

  132. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270. https://doi.org/10.1021/ja403440e Epub 2013 Jun 13

    Article  CAS  Google Scholar 

  133. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590. https://doi.org/10.1021/ja503372r

  134. Liang Y, Liu Q, Asiri AM, Sun X, Luo Y (2014) Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal 4:4065–4069. https://doi.org/10.1021/cs501106g

  135. Pu Z, Liu Q, Asiri AM, Sun X (2014) Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values, ACS Appl Mater Interfaces 6:21874–21879. https://doi.org/10.1021/am5060178

  136. Tian J, Liu Q, Cheng N, Asiri AM, Sun X (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed 53:9577–9581. https://doi.org/10.1002/anie.201403842

    Article  CAS  Google Scholar 

  137. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35. https://doi.org/10.1016/j.apcatb.2004.06.021

  138. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566

    Article  CAS  Google Scholar 

  139. Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (2003) Handbook of fuel cells: fundamentals, technology and applications. Wiley, Chichester, England

    Google Scholar 

  140. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219. https://doi.org/10.1021/jz100553m

    Article  CAS  Google Scholar 

  141. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J Power Sources 102:253–269. https://doi.org/10.1016/S0378-7753(01)00808-4

    Article  CAS  Google Scholar 

  142. Brandon NP, Skinner S, Steele BCH (1993) Recent advances in materials for fuel cells. Annu Rev Mater Res 33(2003):183–213. https://doi.org/10.1146/annurev.matsci.33.022802.094122

    Article  CAS  Google Scholar 

  143. Sealy C (2008) The problem with platinum. Mater Today 11:65–68. https://doi.org/10.1016/S1369-7021(08)70254-2

    Article  CAS  Google Scholar 

  144. Steel BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352. https://doi.org/10.1038/35104620

    Article  Google Scholar 

  145. Adzic R (1998) In: Lipkowski J, Ross PN (eds) Frontiers in electrocatalysis, vol 197. Wiley, New York

    Google Scholar 

  146. Appleby AJ (1993) Electrocatalysis of aqueous dioxygen reduction. J Electroanal Chem 357:117–179. https://doi.org/10.1016/0022-0728(93)80378-U

    Article  CAS  Google Scholar 

  147. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173:891–908

    Article  CAS  Google Scholar 

  148. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951. https://doi.org/10.1016/j.electacta.2008.02.012

    Article  CAS  Google Scholar 

  149. Kiros Y (2007) Metal porphyrins for oxygen reduction in PEMFC. Int J Electrochem Sci 2:285–300

    CAS  Google Scholar 

  150. Lee JW, Popov B (2007) Ruthenium-based electrocatalysts for oxygen reduction—a review. J Solid State Electrochem 11:1355–1364. https://doi.org/10.1007/s10008-007-0307-3

    Article  CAS  Google Scholar 

  151. Markovic NM, Ross PN (2000) New electrocatalysts for fuels cells from model surfaces to commercial catalysts. CATTECH 4:110–126. https://doi.org/10.1023/A:1011963731898

    Article  CAS  Google Scholar 

  152. Spendelow JS, Wieckowski A (2007) Electrolysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675. https://doi.org/10.1039/B703315J

    Article  CAS  Google Scholar 

  153. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 172:133–144. https://doi.org/10.1016/j.jpowsour.2007.07.049

  154. Alonso-Vante N (2006) Carbonyl tailored electrocatalysts. Fuel Cells 6:182–189. https://doi.org/10.1002/fuce.200500245

    Article  CAS  Google Scholar 

  155. Alonso Vante N, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323:431–432. https://doi.org/10.1038/323431a0

    Article  Google Scholar 

  156. Gasteiger HA, Markovic NM (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:48–49. https://doi.org/10.1126/science.1172083

    Article  CAS  Google Scholar 

  157. Appleby AJ (1979) In: Dudley R, O’Grady W, Srinivasan S (eds) The electrocatalysis of fuel cells reactions. The Electrochemical Society Softbound Proceedings Series PV 97-2, Princeton, NJ, p 23

    Google Scholar 

  158. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172:145–154. https://doi.org/10.1016/j.jpowsour.2007.07.048

    Article  CAS  Google Scholar 

  159. Ercelik M, Ozden A, Seker E, Colpan CO (2017) Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications. Int J Hydrogen Energy 42:21518–21529. https://doi.org/10.1016/j.ijhydene.2016.12.020

    Article  CAS  Google Scholar 

  160. Savadogo O, Beck P (1996) Five percent platinum-tungsten oxide-based electrocatalysts for phosphoric acid fuel cell cathodes. J Electrochem Soc 143:3842–3846. https://doi.org/10.1149/1.1837306

    Article  CAS  Google Scholar 

  161. Tian XL, Wang L, Deng P, Chen Y, Xia BY (2017) Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. J Energy Chem 26:1067–1076

    Article  Google Scholar 

  162. Wang P, Shao Q, Huang X (2018) Updating Pt-based electrocatalysts for practical fuel cells. Joule 2:2514–2516. https://doi.org/10.1016/j.joule.2018.11.024

    Article  Google Scholar 

  163. Thompsett D (2003) In: Vielstich W, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol III. Wiley, New York, pp 467–480

    Google Scholar 

  164. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357(1–2):201–224. https://doi.org/10.1016/0022-0728(93)80380-z

    Article  CAS  Google Scholar 

  165. Hwang BJ, Kumar SMS, Chen CH, Monalisa Cheng MY, Liu DG, Lee JF (2007) An Investigation of structure–catalytic activity relationship for Pt–Co/C bimetallic nanoparticles toward the oxygen reduction reaction. J Phys Chem C 111:15267–15276. https://doi.org/10.1021/jp072681r

    Article  CAS  Google Scholar 

  166. Li W, Zhou W, Li H, Zhou Z, Zhou B, Sun G, Xin Q (2004) Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim Acta 49:1045–1055. https://doi.org/10.1016/j.electacta.2003.10.015

    Article  CAS  Google Scholar 

  167. Li H, Sun G, Li N, Sun S, Su D, Xin Q (2007) Design and preparation of highly active Pt–Pd/C catalyst for the oxygen reduction reaction. J Phys Chem C 111(15):5605–5617. https://doi.org/10.1021/jp067755y

    Article  CAS  Google Scholar 

  168. Liu G, Zhang H, Zhai Y, Zhang Y, Xu D, Shao Z-g (2007) Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI. Electrochem Commun 9(1):135–141

    Article  CAS  Google Scholar 

  169. Salgado JRC, Antolini E, Gonzalez ER (2004) Structure and activity of carbon-supported Pt–Co electrocatalysts for oxygen reduction. J Phys Chem B 108:17767–17774. https://doi.org/10.1021/jp0486649

    Article  CAS  Google Scholar 

  170. Tamizhmani G, Capuano GA (1994) Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel cells. J Electrochem Soc 141:968–975. https://doi.org/10.1149/1.2054866J

    Article  CAS  Google Scholar 

  171. Travitsky N, Ripenbein T, Golodnitsky D, Rosenberg Y, Burshtein L, Peled E (2006) Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells. J Power Sources 161:782–789. https://doi.org/10.1016/j.jpowsour.2006.05.035

  172. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 140:2872–2877. https://doi.org/10.1149/1.2220925

    Article  CAS  Google Scholar 

  173. Zignani SC, Antolini E, Gonzalez ER (2008) Evaluation of the stability and durability of Pt and Pt-Co/C catalysts for polymer electrolyte membrane fuel cells. J Power Sources 182:83–90. https://doi.org/10.1016/j.jpowsour.2008.03.061

    Article  CAS  Google Scholar 

  174. Zignani SC, Antolini E, Gonzalez ER (2009) Stability of Pt-Ni/C (1:1) and Pt/C electrocatalysts as cathode materials for polymer electrolyte fuel cells: effect of ageing tests. J Power Sources 191:344–350

    Google Scholar 

  175. Meyers J, Darling R (2002) In: 202nd meeting of the Electrochemical Society, Salt Lake City

    Google Scholar 

  176. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt–Ni and Pt–Co alloy catalysts. J Phys Chem B 106:4181–4191. https://doi.org/10.1021/jp013442l

    Article  CAS  Google Scholar 

  177. Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ (2000) Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes. J Electrochem Soc 147:2620–2624. https://doi.org/10.1149/1.1393579

    Article  CAS  Google Scholar 

  178. Colón-Mercado HR, Kim H, Popov BN (2004) Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells. Electrochem Commun 6:795–799. https://doi.org/10.1016/j.elecom.2004.05.028

    Article  CAS  Google Scholar 

  179. Neyerlin KC, Srivastava R, Yu C, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186:261–267. https://doi.org/10.1016/j.jpowsour.2008.10.062

    Article  CAS  Google Scholar 

  180. Prostailo L, Haug A (2005) In: 208th meeting of the Electrochemical Society, Los Angeles

    Google Scholar 

  181. Yu P, Pemberton M, Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J Power Sources 144:11–20. https://doi.org/10.1016/j.jpowsour.2004.11.067

    Article  CAS  Google Scholar 

  182. García G, Silva-Chong JA, Guillén-Villafuerte O, Rodríguez JL, González ER, Pastor E (2006) CO tolerant catalysts for PEM fuel cells: spectroelectrochemical studies. Catal Today 116:415–421. https://doi.org/10.1016/j.cattod.2006.05.069

    Article  CAS  Google Scholar 

  183. Jasinski R (1964) New fuel cell cathode catalyst. Nature 201:1212–1213. https://doi.org/10.1038/20112

  184. Oh H-S, Kim H (2012) The role of transition metals in non-precious nitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction. J Power Sources 212:220–225. https://doi.org/10.1016/j.jpowsour.2012.03.098

    Article  CAS  Google Scholar 

  185. Shen Y, Bi L, Liu B, Dong S, (2003) Simple preparation method of Pd nanoparticles on an Au electrode and its catalysis for dioxygen reduction. Electronic supplementary information (ESI) available: XRD pattern of an evaporated Au electrode and CVs for the reduction of O2 on a bare Au(111) electrode or a Pd-nanoparticle-film-modified electrode. See: http://www.rsc.org/suppdata/nj/b3/b300566f/. New J Chem 27 (6):938

  186. Lin Y, Cui X, Ye X (2005) Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 7:267–274. https://doi.org/10.1016/j.elecom.2005.01.007

    Article  CAS  Google Scholar 

  187. Xiao L, Zhuang L, Liu Y, Lu J, HcD Abruna (2008) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131:602–608. https://doi.org/10.1021/ja8063765

    Article  CAS  Google Scholar 

  188. Demarconnay L, Coutanceau C, Léger JM (2004) Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol. Electrochim Acta 49:4513–4521. https://doi.org/10.1016/j.electacta.2004.05.009

    Article  CAS  Google Scholar 

  189. Ohno S, Yagyuu K, Nakatsuji K, Komori F (2004) Dissociation preference of oxygen molecules on an inhomogeneously strained Cu(001) surface. Surf Sci 554 (2–3):183–192

    Google Scholar 

  190. Lescop B, Jay JP, Fanjoux G (2004) Reduction of oxygen pre-treated Ni(111) by H2 exposure: UPS and MIES studies compared with monte carlo simulations. Surf Sci 548:83–94. https://doi.org/10.1016/j.susc.2003.09.051

  191. Mentus SV (2004) Oxygen reduction on anodically formed titanium dioxide. Electrochim Acta 50(1):27–32

    Google Scholar 

  192. Kim JY, Oh TK, Shin Y, Bonnett J, Weil KS (2010) A novel non-platinum group electrocatalyst for PEM fuel cell application. Int J Hydrogen Energy (in press). https://doi.org/10.1016/j.ijhydene.2010.05.016

  193. Jaouen F, Dodelet JP (2007) Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochim Acta 52:5975–5984. https://doi.org/10.1016/j.electacta.2007.03.045

    Article  CAS  Google Scholar 

  194. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ki Ota (2004) Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim Acta 49:3479–3485. https://doi.org/10.1016/j.electacta.2004.03.018

    Article  CAS  Google Scholar 

  195. Biddinger E, von Deak D, Ozkan U (2009) Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts. Top Catal 52:1566–1574

    Article  CAS  Google Scholar 

  196. Johnston CM, Cao D, Choi JH, Babu PK, Garzon F, Zelenay P (2011) Se-modified Ru nanoparticles as ORR catalysts—Part 1: synthesis and analysis by RRDE and in PEFCs. J Electroanal Chem 662:257–266. https://doi.org/10.1016/j.jelechem.2011.07.015

    Article  CAS  Google Scholar 

  197. Maheswari S, Sridhar P, Pitchumani S (2012) Pd-RuSe/C as ORR specific catalyst in alkaline solution containing methanol. Fuel Cells 12:963–970. https://doi.org/10.1002/fuce.201200069

    Article  CAS  Google Scholar 

  198. Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bönnemann H, Kochubey DI, Savinova ER (2006) Synthesis and structural characterization of Se-modified carbon-supported ru nanoparticles for the oxygen reduction reaction. J Phys Chem B 110(13):6881–6890. https://doi.org/10.1021/jp056715b

    Article  CAS  Google Scholar 

  199. Cui HF, Ye JS, Zhang WD, Wang J, Sheu FS (2005) Electrocatalytic reduction of oxygen by a platinum nanoparticles/carbon nanotube composite electrode. J Electroanal Chem 577:295–302. https://doi.org/10.1016/j.jelechem.2004.12.004

    Article  CAS  Google Scholar 

  200. Kongkanand A, Kuwabata S, Girishkumar G, Kamat P (2006) Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction. Langmuir 22:2392–2396. https://doi.org/10.1021/la052753a

    Article  CAS  Google Scholar 

  201. Xing Y (2004) Synthesis electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J Phys Chem B 108:19255–19259. https://doi.org/10.1021/jp046697i

    Article  CAS  Google Scholar 

  202. Vijayaraghavan G, Stevenson KJ (2007) Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction. Langmuir 23:5279–5282. https://doi.org/10.1021/la0637263

    Article  CAS  Google Scholar 

  203. Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109(10):4707–4716

    Google Scholar 

  204. Fang B, Kim JH, Kim M, Yu JS (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21:789–796. https://doi.org/10.1021/cm801467y

    Article  CAS  Google Scholar 

  205. Lefèvre M, Dodelet JP (2008) Fe-based electrocatalysts made with microporous pristine carbon black supports for the reduction of oxygen in PEM fuel cells. Electrochim Acta 53:8269–8276. https://doi.org/10.1016/j.electacta.2008.06.050

    Article  CAS  Google Scholar 

  206. Acharya CK, Li W, Liu Z, Kwon G, Heath Turner C, Lane AM, Nikles D, Klein T, Weaver M (2009) Effect of boron doping in the carbon support on platinum nanoparticles and carbon corrosion. J Power Sources 192:324–329. https://doi.org/10.1016/j.jpowsour.2009.03.020

    Article  CAS  Google Scholar 

  207. Sebastián D, Calderón JC, González-Expósito JA, Pastor E, Martínez-Huerta MV, Suelves I, Moliner R, Lázaro MJ (2010) Int J Hydrogen Energy 35:9934–9942

    Article  Google Scholar 

  208. Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova SV, Kryukova GN, Stimming U (2005) The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation. J Power Sources 145(2):178–187

    Google Scholar 

  209. Lebedeva NP, Booij AS, Voropaev IN, Simonov PA, Romanenko AV (2009) Sibunit carbon-based cathodes for proton-exchange-membrane fuel cells. Fuel Cells 9:439–452. https://doi.org/10.1002/fuce.200800180

    Article  CAS  Google Scholar 

  210. Kaiser J, Simonov PA, Zaikovskii VI, Hartnig C, Jörissen L, Savinova ER (2007) Influence of carbon support on the performance of platinum based oxygen reduction catalysts in a polymer electrolyte fuel cell. J Appl Electrochem 37(12):1429–1437

    Google Scholar 

  211. Cherstiouk V, Simonov AN, Moseva NS, Cherepanova SV, Simonov PA, Zaikovskii VI, Savinova ER (2010) Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochim Acta 28:8453–8460. https://doi.org/10.1016/j.electroca.2010.07.047

    Article  Google Scholar 

  212. Biddinger EJ, Ozkan US (2010) Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J Phys Chem C 114:15306–15314

    Article  CAS  Google Scholar 

  213. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  214. Maldonado S, Stevenson KJ (2004) Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: electrocatalytic aspects for oxygen reduction. J Phys Chem B 108:11375–11383

    Article  CAS  Google Scholar 

  215. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. J Mol Catal A: Chem 264:73–81

    Article  CAS  Google Scholar 

  216. Yu D, Nagelli E, Du F, Dai L (2010) Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J Phys Chem Lett 1:2165–2173

    Article  CAS  Google Scholar 

  217. Birry L, Zagal JH, Dodelet JP (2010) Does CO poison Fe-based catalysts for ORR? Electrochem Commun 12:628–631

    Article  CAS  Google Scholar 

  218. Byers HG (1908) The passive state of metals. A review of the literature and theories and some experiments on cobalt, iron and nickel. J Am Chem Soc 30:1718–1742. https://doi.org/10.1021/ja01953a010

    Article  Google Scholar 

  219. Byers HG, Thing CW (1919) Passivity of cobalt. J Am Chem Soc 41:1902–1908. https://doi.org/10.1021/ja02233a006

    Article  Google Scholar 

  220. Hickling A, Hill S (1947) Oxygen overvoltage. Part I. The influence of electrode material, current density, and time in aqueous solution. Discuss Faraday Soc 1: 236. https://doi.org/10.1039/df9470100236

  221. Suzuki O, Takahashi M, Fukunaga T, Kuboyama J (1968) US Pat. No. 3,399,966

    Google Scholar 

  222. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  CAS  Google Scholar 

  223. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102:6027–6036

    Article  CAS  Google Scholar 

  224. Collman JP, Bencosme CS, Durand RR, Kreh RP, Anson FC (1983) Mixed-metal face-to-face porphyrin dimers. J Am Chem Soc 105:2699–2703

    Article  CAS  Google Scholar 

  225. Durand RR, Bencosme CS, Collman JP, Anson FC (1983) Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins. J Am Chem Soc 105:2710–2718

    Article  CAS  Google Scholar 

  226. Badger G, Jones R, Laslett R (1964) Porphyrins. VII. The synthesis of porphyrins by the Rothemund reaction. Aust J Chem 17:1028–1035

    Article  CAS  Google Scholar 

  227. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11(10):4168–4175. https://doi.org/10.1021/nl2020476

  228. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192

    Google Scholar 

  229. Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28:8–19

    Article  CAS  Google Scholar 

  230. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1977) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2:233–240

    Article  Google Scholar 

  231. Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. In: Schäfer F, Gerischer H, Willig F, Meier H, Jahnke H, Schönborn M, Zimmermann G (eds) Physical and chemical applications of dyestuffs, vol 61. Springer, Berlin/Heidelberg, pp 133–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Boudjemaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boudjemaa, A. (2020). History, Progress, and Development of Electrocatalysis. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_16

Download citation

Publish with us

Policies and ethics