Skip to main content

OCT and Compressive Optic Neuropathy

  • Chapter
  • First Online:
OCT and Imaging in Central Nervous System Diseases

Abstract

Optical coherence tomography (OCT) has provided new and important resources for quantification of retinal neural loss in many different optic nerve diseases including compressive optic neuropathies. As in other optic neuropathies OCT can be useful for diagnosis and follow-up of both optic nerve and chiasmal compressive diseases. Axonal loss can be assessed both through peripapillary retinal nerve fiber layer measurements as well as using macular thickness measurements, particularly when segmented analysis of different retinal layers are analyzed. By analyzing the amount of axonal loss OCT can also be of help in estimating the possibility of visual improvement in such conditions. In this chapter, we discuss the main use of OCT in compressive optic neuropathies including primary optic nerve tumors, extrinsic optic nerve compression by tumors or other orbital lesions and the important group of diseases causing chiasmal compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan JW. Compressive and infiltrative optic neuropathies. In: Chan JW, editor. Optic nerve disorders diagnosis and management. New York: Springer; 2007. p. 88–129.

    Chapter  Google Scholar 

  2. Monteiro ML, Medeiros FA, Ostroscki MR. Quantitative analysis of axonal loss in band atrophy of the optic nerve using scanning laser polarimetry. Br J Ophthalmol. 2003;87(1):32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sergott RC, Balcer LJ. The latest on optical coherence tomography. J Neuroophthalmol. 2014;34(Suppl):S1–2.

    Article  PubMed  Google Scholar 

  4. Monteiro ML, Leal BC, Rosa AA, Bronstein MD. Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol. 2004;88(7):896–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendoza-Santiesteban CE, Lopez-Felipe D, Fernandez-Cherkasova L, Hernandez-Echavarria O, Hernandez-Silva Y, Gonzalez-Garcia A. Microperimetry in the study of neuro-ophthalmic diseases. Semin Ophthalmol. 2010;25(4):136–43.

    Article  PubMed  Google Scholar 

  6. Pasol J. Neuro-ophthalmic disease and optical coherence tomography: glaucoma look-alikes. Curr Opin Ophthalmol. 2011;22(2):124–32.

    Article  PubMed  Google Scholar 

  7. Chen JJ. Optical coherence tomography and neuro-ophthalmology. J Neuroophthalmol. 2018;38(1):e5–8.

    Article  PubMed  Google Scholar 

  8. Monteiro ML. Optical coherence tomography in neuro-ophthalmology: do we really need it? J Neuroophthalmol. 2016;36(4):353–5.

    Article  PubMed  Google Scholar 

  9. Kardon RH. Role of the macular optical coherence tomography scan in neuro-ophthalmology. J Neuroophthalmol. 2011;31(4):353–61.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Costello F. Optical coherence tomography in neuro-ophthalmology. Neurol Clin. 2017;35(1):153–63.

    Article  PubMed  Google Scholar 

  11. Adhi M, Duker JS. Optical coherence tomography--current and future applications. Curr Opin Ophthalmol. 2013;24(3):213–21.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58(5):387–429.

    Article  PubMed  Google Scholar 

  13. Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF. Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye (Lond). 2010;24(8):1382–90.

    Article  CAS  Google Scholar 

  14. Monteiro ML, Hokazono K, Fernandes DB, Costa-Cunha LV, Sousa RM, Raza AS, et al. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(5):3328–36.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lam BL. Retinal ganglion cell thickness to assess the optic nerve. J Neuroophthalmol. 2015;35(2):107–8.

    Article  PubMed  Google Scholar 

  16. de Araujo RB, Oyamada MK, Zacharias LC, Cunha LP, Preti RC, Monteiro MLR. Morphological and functional inner and outer retinal layer abnormalities in eyes with permanent temporal hemianopia from chiasmal compression. Front Neurol. 2017;8:619.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology. 2014;121(1):142–9.

    Article  PubMed  Google Scholar 

  18. Fernandes DB, Raza AS, Nogueira RG, Wang D, Callegaro D, Hood DC, et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology. 2013;120(2):387–94.

    Article  PubMed  Google Scholar 

  19. Loo JL, Tian J, Miller NR, Subramanian PS. Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br J Ophthalmol. 2013;97(11):1455–8.

    Article  PubMed  Google Scholar 

  20. Sibony P, Strachovsky M, Honkanen R, Kupersmith MJ. Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas. J Neuroophthalmol. 2014;34(2):130–6.

    Article  PubMed  Google Scholar 

  21. Sibony P, Kupersmith MJ, Rohlf FJ. Shape analysis of the peripapillary RPE layer in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2011;52(11):7987–95.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci. 2008;49(5):1879–85.

    Article  PubMed  Google Scholar 

  23. Subei AM, Eggenberger ER. Optical coherence tomography: another useful tool in a neuro-ophthalmologist’s armamentarium. Curr Opin Ophthalmol. 2009;20(6):462–6.

    Article  PubMed  Google Scholar 

  24. Dutton JJ. Optic nerve sheath meningiomas. Surv Ophthalmol. 1992;37(3):167–83.

    Article  CAS  PubMed  Google Scholar 

  25. Spencer WH. Primary neoplasms of the optic nerve and its sheaths: clinical features and current concepts of pathogenetic mechanisms. Trans Am Ophthalmol Soc. 1972;70:490–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dutton JJ. Optic nerve gliomas and meningiomas. Neurol Clin. 1991;9(1):163–77.

    Article  CAS  PubMed  Google Scholar 

  27. Miller NR. New concepts in the diagnosis and management of optic nerve sheath meningioma. J Neuroophthalmol. 2006;26(3):200–8.

    Article  PubMed  Google Scholar 

  28. Parker RT, Ovens CA, Fraser CL, Samarawickrama C. Optic nerve sheath meningiomas: prevalence, impact, and management strategies. Eye Brain. 2018;10:85–99.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saeed P, Blank L, Selva D, Wolbers JG, Nowak PJ, Geskus RB, et al. Primary radiotherapy in progressive optic nerve sheath meningiomas: a long-term follow-up study. Br J Ophthalmol. 2010;94(5):564–8.

    Article  PubMed  Google Scholar 

  30. Solda F, Wharram B, De Ieso PB, Bonner J, Ashley S, Brada M. Long-term efficacy of fractionated radiotherapy for benign meningiomas. Radiother Oncol. 2013;109(2):330–4.

    Article  PubMed  Google Scholar 

  31. Imes RK, Schatz H, Hoyt WF, Monteiro ML, Narahara M. Evolution of optociliary veins in optic nerve sheath meningioma. Evol Arch Ophthalmol. 1985;103(1):59–60.

    Article  CAS  Google Scholar 

  32. Rosenberg LF, Miller NR. Visual results after microsurgical removal of meningiomas involving the anterior visual system. Arch Ophthalmol. 1984;102(7):1019–23.

    Article  CAS  PubMed  Google Scholar 

  33. Dutton JJ. Gliomas of the anterior visual pathway. Surv Ophthalmol. 1994;38(5):427–52.

    Article  CAS  PubMed  Google Scholar 

  34. Miller NR. Primary tumours of the optic nerve and its sheath. Eye (Lond). 2004;18(11):1026–37.

    Article  CAS  Google Scholar 

  35. Kelly JP, Leary S, Khanna P, Weiss AH. Longitudinal measures of visual function, tumor volume, and prediction of visual outcomes after treatment of optic pathway gliomas. Ophthalmology. 2012;119(6):1231–7.

    Article  PubMed  Google Scholar 

  36. Chang L, El-Dairi MA, Frempong TA, Burner EL, Bhatti MT, Young TL, et al. Optical coherence tomography in the evaluation of neurofibromatosis type-1 subjects with optic pathway gliomas. J AAPOS. 2010;14(6):511–7.

    Article  PubMed  Google Scholar 

  37. Avery RA, Liu GT, Fisher MJ, Quinn GE, Belasco JB, Phillips PC, et al. Retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2011;151(3):542–9 e2.

    Google Scholar 

  38. Parrozzani R, Clementi M, Kotsafti O, Miglionico G, Trevisson E, Orlando G, et al. Optical coherence tomography in the diagnosis of optic pathway gliomas. Invest Ophthalmol Vis Sci. 2013;54(13):8112–8.

    Article  PubMed  Google Scholar 

  39. Fard MA, Fakhree S, Eshraghi B. Correlation of optical coherence tomography parameters with clinical and radiological progression in patients with symptomatic optic pathway gliomas. Graefes Arch Clin Exp Ophthalmol. 2013;251(10):2429–36.

    Article  PubMed  Google Scholar 

  40. Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci. 2014;55(3):1402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hepokur M, Sarici AM. Investigation of retinal nerve fiber layer thickness and ganglion cell layer-inner plexiform layer thickness in patients with optic pathway gliomas. Graefes Arch Clin Exp Ophthalmol. 2018;256(9):1757–65.

    Article  PubMed  Google Scholar 

  42. Sahinoglu-Keskek N, Altan-Yaycioglu R, Canan H, Coban-Karatas M, Erbay A, Yazici N, et al. Measurements of retinal nerve fiber thickness and ganglion cell complex in neurofibromatosis type 1, with and without optic pathway gliomas: a case series. Curr Eye Res. 2018;43(3):424–7.

    Article  PubMed  Google Scholar 

  43. Avery RA, Hwang EI, Ishikawa H, Acosta MT, Hutcheson KA, Santos D, et al. Handheld optical coherence tomography during sedation in young children with optic pathway gliomas. JAMA Ophthalmol. 2014;132(3):265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Avery RA, Cnaan A, Schuman JS, Trimboli-Heidler C, Chen CL, Packer RJ, et al. Longitudinal change of circumpapillary retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2015;160(5):944–52 e1.

    Google Scholar 

  45. McKeag D, Lane C, Lazarus JH, Baldeschi L, Boboridis K, Dickinson AJ, et al. Clinical features of dysthyroid optic neuropathy: a European Group on Graves’ Orbitopathy (EUGOGO) survey. Br J Ophthalmol. 2007;91(4):455–8.

    Article  PubMed  Google Scholar 

  46. Hallin ES, Feldon SE, Luttrell J. Graves’ ophthalmopathy: III. Effect of transantral orbital decompression on optic neuropathy. Br J Ophthalmol. 1988;72(9):683–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ben Simon GJ, Syed HM, Douglas R, Schwartz R, Goldberg RA, McCann JD. Clinical manifestations and treatment outcome of optic neuropathy in thyroid-related orbitopathy. Ophthalmic Surg Lasers Imaging. 2006;37(4):284–90.

    Article  PubMed  Google Scholar 

  48. Neigel JM, Rootman J, Belkin RI, Nugent RA, Drance SM, Beattie CW, et al. Dysthyroid optic neuropathy. The crowded orbital apex syndrome. Ophthalmology. 1988;95(11):1515–21.

    Article  CAS  PubMed  Google Scholar 

  49. Goncalves AC, Gebrim EM, Monteiro ML. Imaging studies for diagnosing Graves’ orbitopathy and dysthyroid optic neuropathy. Clinics (Sao Paulo). 2012;67(11):1327–34.

    Article  Google Scholar 

  50. Goncalves AC, Silva LN, Gebrim EM, Monteiro ML. Quantification of orbital apex crowding for screening of dysthyroid optic neuropathy using multidetector CT. AJNR Am J Neuroradiol. 2012;33(8):1602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang JK, Kardon RH, Kupersmith MJ, Garvin MK. Automated quantification of volumetric optic disc swelling in papilledema using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(7):4069–75.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52(9):6558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Forte R, Bonavolonta P, Vassallo P. Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroid-associated orbitopathy. Ophthalmologica. 2010;224(2):116–21.

    Article  PubMed  Google Scholar 

  54. Perez-Rico C, Rodriguez-Gonzalez N, Arevalo-Serrano J, Blanco R. Evaluation of multifocal visual evoked potentials in patients with Graves’ orbitopathy and subclinical optic nerve involvement. Doc Ophthalmol. 2012;125(1):11–9.

    Article  PubMed  Google Scholar 

  55. Anderson D, Faber P, Marcovitz S, Hardy J, Lorenzetti D. Pituitary tumors and the ophthalmologist. Ophthalmology. 1983;90(11):1265–70.

    Article  CAS  PubMed  Google Scholar 

  56. Unsold R, Hoyt WF. Band atrophy of the optic nerve. The histology of temporal hemianopsia. Arch Ophthalmol. 1980;98(9):1637–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kanamori A, Nakamura M, Matsui N, Nagai A, Nakanishi Y, Kusuhara S, et al. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology. 2004;111(12):2278–83.

    Article  PubMed  Google Scholar 

  58. Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, et al. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci. 2006;47(11):4827–35.

    Article  PubMed  Google Scholar 

  59. Monteiro ML, Leal BC, Moura FC, Vessani RM, Medeiros FA. Comparison of retinal nerve fibre layer measurements using optical coherence tomography versions 1 and 3 in eyes with band atrophy of the optic nerve and normal controls. Eye (Lond). 2007;21(1):16–22.

    Article  CAS  Google Scholar 

  60. Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML. Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Am J Ophthalmol. 2009;147(1):56–63 e2.

    Article  PubMed  Google Scholar 

  61. Sousa RM, Oyamada MK, Cunha LP, Monteiro MLR. Multifocal visual evoked potential in eyes with temporal hemianopia from chiasmal compression: correlation with standard automated perimetry and OCT findings. Invest Ophthalmol Vis Sci. 2017;58(11):4436–49.

    Article  PubMed  Google Scholar 

  62. Al-Louzi O, Prasad S, Mallery RM. Utility of optical coherence tomography in the evaluation of sellar and parasellar mass lesions. Curr Opin Endocrinol Diabetes Obes. 2018;25(4):274–84.

    Article  PubMed  Google Scholar 

  63. Moura FC, Medeiros FA, Monteiro ML. Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology. 2007;114(1):175–81.

    Article  PubMed  Google Scholar 

  64. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107(10):1809–15.

    Article  CAS  PubMed  Google Scholar 

  65. Shin HY, Park HY, Choi JA, Park CK. Macular ganglion cell-inner plexiform layer thinning in patients with visual field defect that respects the vertical meridian. Graefes Arch Clin Exp Ophthalmol. 2014;252(9):1501–7.

    Article  PubMed  Google Scholar 

  66. Tieger MG, Hedges TR 3rd, Ho J, Erlich-Malona NK, Vuong LN, Athappilly GK, et al. Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol. 2017;37(1):7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sun M, Zhang Z, Ma C, Chen S, Chen X. Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma. PLoS One. 2017;12(6):e0179532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yum HR, Park SH, Park HY, Shin SY. Macular ganglion cell analysis determined by cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS One. 2016;11(4):e0153064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moon CH, Lee SH, Kim BT, Hwang SC, Ohn YH, Park TK. Diagnostic ability of retinal nerve fiber layer thickness measurements and neurologic hemifield test to detect chiasmal compression. Invest Ophthalmol Vis Sci. 2012;53(9):5410–5.

    Article  PubMed  Google Scholar 

  70. Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci. 2011;52(11):7966–73.

    Article  PubMed  Google Scholar 

  71. Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M. The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci. 2014;55(7):4667–72.

    Article  PubMed  Google Scholar 

  72. Monteiro ML, Cunha LP, Costa-Cunha LV, Maia OO Jr, Oyamada MK. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci. 2009;50(8):3535–41.

    Article  PubMed  Google Scholar 

  73. Monteiro ML, Hokazono K, Cunha LP, Oyamada MK. Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression. Graefes Arch Clin Exp Ophthalmol. 2012;251(3):903–15.

    Article  PubMed  Google Scholar 

  74. Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci. 2011;52(11):8527–33.

    Article  PubMed  Google Scholar 

  75. Kerrison JB, Lynn MJ, Baer CA, Newman SA, Biousse V, Newman NJ. Stages of improvement in visual fields after pituitary tumor resection. Am J Ophthalmol. 2000;130(6):813–20.

    Article  CAS  PubMed  Google Scholar 

  76. Findlay G, McFadzean RM, Teasdale G. Recovery of vision following treatment of pituitary tumours; application of a new system of assessment to patients treated by transsphenoidal operation. Acta Neurochir. 1983;68(3–4):175–86.

    Article  CAS  PubMed  Google Scholar 

  77. Gnanalingham KK, Bhattacharjee S, Pennington R, Ng J, Mendoza N. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome. J Neurol Neurosurg Psychiatry. 2005;76(3):415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Monteiro ML, Zambon BK, Cunha LP. Predictive factors for the development of visual loss in patients with pituitary macroadenomas and for visual recovery after optic pathway decompression. Can J Ophthalmol. 2010;45(4):404–8.

    Article  PubMed  Google Scholar 

  79. Cohen AR, Cooper PR, Kupersmith MJ, Flamm ES, Ransohoff J. Visual recovery after transsphenoidal removal of pituitary adenomas. Neurosurgery. 1985;17(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  80. Barzaghi LR, Medone M, Losa M, Bianchi S, Giovanelli M, Mortini P. Prognostic factors of visual field improvement after trans-sphenoidal approach for pituitary macroadenomas: review of the literature and analysis by quantitative method. Neurosurg Rev. 2012;35(3):369–78. Discussion 78–9.

    Article  PubMed  Google Scholar 

  81. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol. 2009;147(1):64–70 e2.

    Google Scholar 

  82. Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci. 2015;22(7):1098–104.

    Article  PubMed  Google Scholar 

  83. Ohkubo S, Higashide T, Takeda H, Murotani E, Hayashi Y, Sugiyama K. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol. 2012;56(1):68–75.

    Article  PubMed  Google Scholar 

  84. Monteiro MLR. Macular ganglion cell complex reduction preceding visual field loss in a patient with chiasmal compression with a 21-month follow-up. J Neuroophthalmol. 2018;38(1):124–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monteiro, M.L.R. (2020). OCT and Compressive Optic Neuropathy. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics