Skip to main content

Advertisement

Log in

Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression

  • Neurophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the correlation between multifocal pattern electroretinography (mfPERG) and Fourier-domain optical coherence tomography (FD-OCT) with regard to macular and retinal nerve fiber layer (RNFL) thickness in eyes with temporal hemianopia from chiasmal compression.

Methods

Twenty-five eyes from 25 patients with permanent temporal visual field defects from chiasmal compression and 25 healthy eyes were submitted to mfPERG using a stimulus pattern of 19 rectangles, standard automated perimetry and FD-OCT measurements. The mfPERG response was determined for groups of three rectangles for the nasal and temporal hemifields and for each quadrant. Macular thickness measurements were registered according to an overlaid OCT-generated checkerboard with 36 checks and averaged for the central area, and for each scanned quadrant and hemifield. RNFL thickness was determined for all twelve 30-degree segments around the disc, and averaged for the segments corresponding to the 6, 7, 8, 9, 10, 11 and 12 o’clock position. Correlations were verified with Pearson’s correlation coefficients and linear regression analysis.

Results

Both mfPERG amplitudes and OCT measurements were significantly smaller in eyes with temporal visual field defects than in normals. A significant and strong correlation was found between most mfPERG and macular or RNFL thickness OCT parameters.

Conclusions

mfPERG amplitudes and OCT measurements are significantly correlated in patients with chiasmal compression. Both technologies can quantify neuronal loss and, if used in combination, may help clarify structure–function relationships in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561

    Article  PubMed  CAS  Google Scholar 

  2. Hood DC, Xu L, Thienprasiddhi P, Greenstein VC, Odel JG, Grippo TM, Liebmann JM, Ritch R (2005) The pattern electroretinogram in glaucoma patients with confirmed visual field deficits. Invest Ophthalmol Vis Sci 46:2411–2418

    Article  PubMed  Google Scholar 

  3. Cunha LP, Oyamada MK, Monteiro ML (2008) Pattern electroretinograms for the detection of neural loss in patients with permanent temporal visual field defect from chiasmal compression. Doc Ophthalmol 117:223–232

    Article  PubMed  Google Scholar 

  4. Hokazono K, Oyamada MK, Monteiro ML (2011) Pattern-reversal electroretinograms for the diagnosis and management of disorders of the anterior visual pathway. Arq Bras Oftalmol 74:222–226

    Article  PubMed  Google Scholar 

  5. Luo X, Frishman LJ (2011) Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci 52:8571–8584

    Article  PubMed  Google Scholar 

  6. Parisi V, Manni G, Centofanti M, Gandolfi SA, Olzi D, Bucci MG (2001) Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 108:905–912

    Article  PubMed  CAS  Google Scholar 

  7. Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA (2002) Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 43:2213–2220

    PubMed  Google Scholar 

  8. Hood DC, Anderson SC, Wall M, Kardon RH (2007) Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 48:3662–3668

    Article  PubMed  Google Scholar 

  9. Bowd C, Tafreshi A, Zangwill LM, Medeiros FA, Sample PA, Weinreb RN (2011) Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye 25:224–232

    Article  PubMed  CAS  Google Scholar 

  10. Monteiro ML, Leal BC, Moura FC, Vessani RM, Medeiros FA (2007) Comparison of retinal nerve fibre layer measurements using optical coherence tomography versions 1 and 3 in eyes with band atrophy of the optic nerve and normal controls. Eye 21:16–22

    Article  PubMed  CAS  Google Scholar 

  11. Monteiro ML, Moura FC (2008) Comparison of the GDx VCC scanning laser polarimeter and the stratus optical coherence tomograph in the detection of band atrophy of the optic nerve. Eye 22:641–648

    Article  PubMed  CAS  Google Scholar 

  12. Moura FC, Medeiros FA, Monteiro ML (2007) Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology 114:175–181

    Article  PubMed  Google Scholar 

  13. Unsold R, Hoyt WF (1980) Band atrophy of the optic nerve. The histology of temporal hemianopsia. Arch Ophthalmol 98:1637–1638

    Article  PubMed  CAS  Google Scholar 

  14. Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47:4827–4835

    Article  PubMed  Google Scholar 

  15. Monteiro ML, Cunha LP, Costa-Cunha LV, Maia OO Jr, Oyamada MK (2009) Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci 50:3535–3541

    Article  PubMed  Google Scholar 

  16. Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165

    Article  PubMed  CAS  Google Scholar 

  17. Stiefelmeyer S, Neubauer AS, Berninger T, Arden GB, Rudolph G (2004) The multifocal pattern electroretinogram in glaucoma. Vis Res 44:103–112

    Article  PubMed  Google Scholar 

  18. Langrova H, Jagle H, Zrenner E, Kurtenbach A (2007) The multifocal pattern electroretinogram (mfPERG) and cone-isolating stimuli. Vis Neurosci 24:805–816

    Article  PubMed  Google Scholar 

  19. Sliesoraityte I, Troeger E, Bernd A, Kurtenbach A, Zrenner E (2012) Correlation between spectral domain OCT retinal nerve fibre layer thickness and multifocal pattern electroretinogram in advanced retinitis pigmentosa. Adv Exp Med Biol 723:471–478

    Article  PubMed  Google Scholar 

  20. Monteiro ML, Hokazono K, Cunha LP, Oyamada MK (2012) Multifocal pattern electroretinography for the detection of neural loss in eyes with permanent temporal hemianopia or quadrantanopia from chiasmal compression. Br J Ophthalmol 96:104–109

    Article  PubMed  Google Scholar 

  21. Poloschek CM, Bach M (2009) The mfERG response topography with scaled stimuli: effect of the stretch factor. Doc Ophthalmol 119:51–58

    Article  PubMed  Google Scholar 

  22. Harrison WW, Viswanathan S, Malinovsky VE (2006) Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom Vis Sci 83:473–485

    Article  PubMed  Google Scholar 

  23. Parmar DN, Sofat A, Bowman R, Bartlett JR, Holder GE (2000) Visual prognostic value of the pattern electroretinogram in chiasmal compression. Br J Ophthalmol 84:1024–1026

    Article  PubMed  CAS  Google Scholar 

  24. Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF (2010) Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye 24:1382–1390

    Article  PubMed  CAS  Google Scholar 

  25. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S, Bucci MG, Pierelli F (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40:2520–2527

    PubMed  CAS  Google Scholar 

  26. Lenassi E, Jarc-Vidmar M, Glavac D, Hawlina M (2009) Pattern electroretinography of larger stimulus field size and spectral-domain optical coherence tomography in patients with Stargardt disease. Br J Ophthalmol 93:1600–1605

    Article  PubMed  CAS  Google Scholar 

  27. Falsini B, Marangoni D, Salgarello T, Stifano G, Montrone L, Campagna F, Aliberti S, Balestrazzi E, Colotto A (2008) Structure-function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol 246:1153–1162

    Article  PubMed  Google Scholar 

  28. Hoffmann MB, Flechner JJ (2008) Slow pattern-reversal stimulation facilitates the assessment of retinal function with multifocal recordings. Clin Neurophysiol 119:409–417

    Article  PubMed  Google Scholar 

  29. Chan HH, Ng YF, Chu PH (2011) Applications of the multifocal electroretinogram in the detection of glaucoma. Clin Exp Optom 94:247–258

    Article  PubMed  Google Scholar 

  30. Chu PH, Ng YF, To CH, So KF, Brown B, Chan HH (2012) Luminance-modulated adaptation in the global flash mfERG: a preliminary study of early retinal functional changes in high-risk glaucoma patients. Graefes Arch Clin Exp Ophthalmol 250:261–270

    Article  PubMed  Google Scholar 

  31. Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci 52:8527–8533

    Article  PubMed  Google Scholar 

  32. Poloschek CM, Bach M (2009) Can we do without mydriasis in multifocal ERG recordings? Doc Ophthalmol 118:121–127

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding: Supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo FAPESP (No 2009/50174-0), São Paulo, Brazil and from Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (No 306487/2011-0), Brasília, Brazil.

Financial disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário L. R. Monteiro.

Additional information

ClinicalTrial.gov identifier number: NCT00553761

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, M.L.R., Hokazono, K., Cunha, L.P. et al. Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression. Graefes Arch Clin Exp Ophthalmol 251, 903–915 (2013). https://doi.org/10.1007/s00417-012-2156-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2156-8

Keywords

Navigation