Skip to main content

Potential Immunology, Transcriptomics and Epigenomic Prediction Tools of the Future to Improve tuberculosis Control

  • Chapter
  • First Online:
Tuberculosis Host-Pathogen Interactions

Abstract

Mycobacterium tuberculosis (Mtb) continues to be a global scourge with 10.4 million cases of TB and 1.7 million deaths each year. The burgeoning molecular biology is both clarifying Mtb-induced pathology, but also raising new questions with many major challenges remaining: Immune correlates of protection are still to be clarified. Clinical biomarkers that predict disease progression are needed. Non-sputum quantitative means to monitor treatment efficacy are needed. Herein, we briefly review the spectrum of Mtb infection and pathology and then discuss how novel studies in immunology, transcriptomics and epigenomics could be translated into clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, Falzon D, Floyd K, Gargioni G, Getahun H, et al. WHO’s new end TB strategy. Lancet. 2015;385(9979):1799–801.

    Article  PubMed  Google Scholar 

  2. WHO. Global tuberculosis report, 2016. Geneva: WHO; 2016.

    Google Scholar 

  3. WHO. Recommendations for investigating contacts of persons with infectious tuberculosis in low- and middle-income countries. Geneva: WHO; 2012.

    Google Scholar 

  4. Comstock GW, Baum C, Snider DE Jr. Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am Rev Respir Dis. 1979;119(5):827–30.

    CAS  PubMed  Google Scholar 

  5. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. International Union Against Tuberculosis Committee on Prophylaxis. Bull World Health Organ. 1982;60(4):555–64.

    Google Scholar 

  6. Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev. 2013;(7):CD007545.

    Google Scholar 

  7. Ayieko J, Abuogi L, Simchowitz B, Bukusi EA, Smith AH, Reingold A. Efficacy of isoniazid prophylactic therapy in prevention of tuberculosis in children: a meta-analysis. BMC Infect Dis. 2014;14:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon-gamma release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest. 2012;142(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  9. Dodd PJ, Gardiner E, Coghlan R, Seddon JA. Burden of childhood tuberculosis in 22 high-burden countries: a mathematical modelling study. Lancet Glob Health. 2014;2(8):e453–9.

    Article  PubMed  Google Scholar 

  10. Smieja M, Marchetti C, Cook D, Smaill F. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev. 1999;(1):CD001363.

    Google Scholar 

  11. Woldehana S, Volmink J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev. 2004;(1):CD000171.

    Google Scholar 

  12. Hsu KH. Isoniazid in the prevention and treatment of tuberculosis. A 20-year study of the effectiveness in children. JAMA. 1974;229(5):528–33.

    Article  CAS  PubMed  Google Scholar 

  13. WHO. Global tuberculosis report 2016. World Health Organization; 2016.

    Google Scholar 

  14. Beyers N, Gie RP, Schaaf HS, Van Zyl S, Talent JM, Nel ED, Donald PR. A prospective evaluation of children under the age of 5 years living in the same household as adults with recently diagnosed pulmonary tuberculosis. Int J Tuberc Lung Dis. 1997;1(1):38–43.

    CAS  PubMed  Google Scholar 

  15. Lienhardt C, Sillah J, Fielding K, Donkor S, Manneh K, Warndorff D, Bennett S, McAdam K. Risk factors for tuberculosis infection in children in contact with infectious tuberculosis cases in the Gambia, West Africa. Pediatrics. 2003;111(5 Pt 1):e608–14.

    Article  PubMed  Google Scholar 

  16. Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(6):359–68.

    Article  PubMed  Google Scholar 

  17. Smith S, Jacobs RF, Wilson CB. Immunobiology of childhood tuberculosis: a window on the ontogeny of cellular immunity. J Pediatr. 1997;131(1 Pt 1):16–26.

    Article  CAS  PubMed  Google Scholar 

  18. Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med. 1998;157(3 Pt 1):679–91.

    Article  CAS  PubMed  Google Scholar 

  19. Barnes P. Immunology of tuberculosis. Semin Pediatr Infect Dis. 1993;4:232.

    Google Scholar 

  20. Barnes PF, Grisso CL, Abrams JS, Band H, Rea TH, Modlin RL. Gamma delta T lymphocytes in human tuberculosis. J Infect Dis. 1992;165(3):506–12.

    Article  CAS  PubMed  Google Scholar 

  21. Young DB, Gideon HP, Wilkinson RJ. Eliminating latent tuberculosis. Trends Microbiol. 2009;17(5):183–8.

    Article  CAS  PubMed  Google Scholar 

  22. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol. 2011;186(3):1598–607.

    Article  CAS  PubMed  Google Scholar 

  23. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 2015;11(1):e1004603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol. 2014;12(4):289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roca FJ, Ramakrishnan L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. 2013;153(3):521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King MC, Hawn TR, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell. 2010;140(5):717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nardell EA, Wallis RS. Here today--gone tomorrow: the case for transient acute tuberculosis infection. Am J Respir Crit Care Med. 2006;174(7):734–5.

    Article  PubMed  Google Scholar 

  28. Comstock G. Epidemiology of tuberculosis. In: Reichman LB, Hershfield E, editors. Tuberculosis: a comprehensive international approach. 2nd ed. New York: Marcel Dekker; 2000. p. 129–48.

    Google Scholar 

  29. Yates TA, Khan PY, Knight GM, Taylor JG, McHugh TD, Lipman M, White RG, Cohen T, Cobelens FG, Wood R, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis. 2016;16(2):227–38.

    Article  PubMed  Google Scholar 

  30. Mandalakas A, Kirchner HL, Lombard C, Wazyl G, Gie R, Hesseling A. Well quantified tuberculosis exposure is a reliable surrogate measure of tuberculosis infection in children. Int J Tuberc Lung Dis. 2012;16:1033.

    Article  CAS  PubMed  Google Scholar 

  31. Wood R, Johnstone-Robertson S, Uys P, Hargrove J, Middelkoop K, Lawn SD, Bekker LG. Tuberculosis transmission to young children in a South African community: modeling household and community infection risks. Clin Infect Dis. 2010;51(4):401–8.

    Article  PubMed  Google Scholar 

  32. Sutter RW, Haefliger E. Tuberculosis morbidity and infection in Vietnamese in Southeast Asian refugee camps. Am Rev Respir Dis. 1990;141(6):1483–6.

    Article  CAS  PubMed  Google Scholar 

  33. Mandalakas AM, Kirchner HL, Iverson S, Chesney M, Spencer MJ, Sidler A, Johnson D. Predictors of Mycobacterium tuberculosis infection in international adoptees. Pediatrics. 2007;120(3):e610–6.

    Article  PubMed  Google Scholar 

  34. Saiman L, Aronson J, Zhou J, Gomez-Duarte C, Gabriel PS, Alonso M, Maloney S, Schulte J. Prevalence of infectious diseases among internationally adopted children. Pediatrics. 2001;108(3):608–12.

    Article  CAS  PubMed  Google Scholar 

  35. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Starke JJ, Enarson DA, Donald PR, Beyers N. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis. 2004;8(4):392–402.

    CAS  PubMed  Google Scholar 

  36. Horsburgh CR Jr. Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med. 2004;350(20):2060–7.

    Article  CAS  PubMed  Google Scholar 

  37. den Boon S, van Lill SW, Borgdorff MW, Verver S, Bateman ED, Lombard CJ, Enarson DA, Beyers N. Association between smoking and tuberculosis infection: a population survey in a high tuberculosis incidence area. Thorax. 2005;60(7):555–7.

    Article  Google Scholar 

  38. Bhat GJ, Diwan VK, Chintu C, Kabika M, Masona J. HIV, BCG and TB in children: a case control study in Lusaka, Zambia. J Trop Pediatr. 1993;39(4):219–23.

    Article  CAS  PubMed  Google Scholar 

  39. Hesseling AC, Cotton MF, Jennings T, Whitelaw A, Johnson LF, Eley B, Roux P, Godfrey-Faussett P, Schaaf HS. High incidence of tuberculosis among HIV-infected infants: evidence from a South African population-based study highlights the need for improved tuberculosis control strategies. Clin Infect Dis. 2009;48(1):108–14.

    Article  CAS  PubMed  Google Scholar 

  40. Schaaf HS, Marais BJ, Whitelaw A, Hesseling AC, Eley B, Hussey GD, Donald PR. Culture-confirmed childhood tuberculosis in Cape Town, South Africa: a review of 596 cases. BMC Infect Dis. 2007;7:140.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marais BJ. On the definition of relevant disease. Arch Dis Child. 2004;89(5):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mandalakas AM, Kirchner HL, Lombard C, Walzl G, Grewal HM, Gie RP, Hesseling AC. Well-quantified tuberculosis exposure is a reliable surrogate measure of tuberculosis infection. Int J Tuberc Lung Dis. 2012;16(8):1033–9.

    Article  CAS  PubMed  Google Scholar 

  43. Chan PC, Shinn-Forng Peng S, Chiou MY, Ling DL, Chang LY, Wang KF, Fang CT, Huang LM. Risk for tuberculosis in child contacts. Development and validation of a predictive score. Am J Respir Crit Care Med. 2014;189(2):203–13.

    PubMed  Google Scholar 

  44. Jones-Lopez EC, Acuna-Villaorduna C, Ssebidandi M, Gaeddert M, Kubiak RW, Ayakaka I, White LF, Joloba M, Okwera A, Fennelly KP. Cough aerosols of Mycobacterium tuberculosis in the prediction of incident tuberculosis disease in household contacts. Clin Infect Dis. 2016;63(1):10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fennelly KP, Jones-Lopez EC. Quantity and quality of inhaled dose predicts immunopathology in tuberculosis. Front Immunol. 2015;6:313.

    PubMed  PubMed Central  Google Scholar 

  46. Fennelly KP. What is in a cough? Int J Mycobacteriol. 2016;5(Suppl 1):S51.

    Article  PubMed  Google Scholar 

  47. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264(1):182–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herbst S, Schaible UE, Schneider BE. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS One. 2011;6(5):e19105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vandal OH, Nathan CF, Ehrt S. Acid resistance in Mycobacterium tuberculosis. J Bacteriol. 2009;191(15):4714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keiser TL, Purdy GE. Killing Mycobacterium tuberculosis in vitro: what model systems can teach us. Microbiol Spectr. 2017;5(3). https://doi.org/10.1128/microbiolspec.TBTB2-0028-2016.

  51. Venketaraman V, Dayaram YK, Amin AG, Ngo R, Green RM, Talaue MT, Mann J, Connell ND. Role of glutathione in macrophage control of mycobacteria. Infect Immun. 2003;71(4):1864–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL. CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog. 2016;12(5):e1005667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Andrews JR, Nemes E, Tameris M, Landry BS, Mahomed H, McClain JB, Fletcher HA, Hanekom WA, Wood R, McShane H, et al. Serial QuantiFERON testing and tuberculosis disease risk among young children: an observational cohort study. Lancet Respir Med. 2017;5(4):282–90.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Basu Roy R, Sotgiu G, Altet-Gomez N, Tsolia M, Ruga E, Velizarova S, Kampmann B. Identifying predictors of interferon-gamma release assay results in pediatric latent tuberculosis: a protective role of bacillus Calmette-Guerin?: a pTB-NET collaborative study. Am J Respir Crit Care Med. 2012;186(4):378–84.

    Article  PubMed  CAS  Google Scholar 

  55. Soysal A, Millington KA, Bakir M, Dosanjh D, Aslan Y, Deeks JJ, Efe S, Staveley I, Ewer K, Lalvani A. Effect of BCG vaccination on risk of Mycobacterium tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. Lancet. 2005;366(9495):1443–51.

    Article  Google Scholar 

  56. Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, Cavassini M, Calandra T, Blanchet CL, Jaton K, et al. Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med. 2011;17(3):372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adekambi T, Ibegbu CC, Cagle S, Kalokhe AS, Wang YF, Hu Y, Day CL, Ray SM, Rengarajan J. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Invest. 2015;125(5):1827–38.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kling J. Cytometry: measure for measure. Nature. 2015;518(7539):439–43.

    Article  CAS  PubMed  Google Scholar 

  59. Shenai S, Ronacher K, Malherbe S, Stanley K, Kriel M, Winter J, Peppard T, Barry CE, Wang J, Dodd LE, et al. Bacterial loads measured by the Xpert MTB/RIF assay as markers of culture conversion and bacteriological cure in pulmonary TB. PLoS One. 2016;11(8):e0160062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, Crampin AC, Dockrell HM, French N, Hamilton MS, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med. 2014;370(18):1712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, Mahomed H, Erasmus M, Whatney W, Hussey GD, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet. 2016;387(10035):2312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Lannoy C, de Ridder D, Risse J. The long reads ahead: de novo genome assembly using the MinION. F1000Res. 2017;6:1083.

    PubMed  PubMed Central  Google Scholar 

  63. Gause WC, Wynn TA, Allen JE. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol. 2013;13(8):607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barron L, Wynn TA. Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur J Immunol. 2011;41(9):2509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109(43):17537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity. 2013;39(5):819–32.

    Article  CAS  PubMed  Google Scholar 

  67. DiNardo CD, Ravandi F, Agresta S, Konopleva M, Takahashi K, Kadia T, Routbort M, Patel KP, Mark B, Pierce S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zumla A, Rao M, Dodoo E, Maeurer M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med. 2016;14:89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bhatt K, Verma S, Ellner JJ, Salgame P. Quest for correlates of protection against tuberculosis. Clin Vaccine Immunol. 2015;22(3):258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodriguez RM, Suarez-Alvarez B, Mosen-Ansorena D, Garcia-Peydro M, Fuentes P, Garcia-Leon MJ, Gonzalez-Lahera A, Macias-Camara N, Toribio ML, Aransay AM, et al. Regulation of the transcriptional program by DNA methylation during human alphabeta T-cell development. Nucleic Acids Res. 2015;43(2):760–74.

    Article  CAS  PubMed  Google Scholar 

  71. Hirahara K, Vahedi G, Ghoreschi K, Yang XP, Nakayamada S, Kanno Y, O’Shea JJ, Laurence A. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology. 2011;134(3):235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanhere A, Hertweck A, Bhatia U, Gokmen MR, Perucha E, Jackson I, Lord GM, Jenner RG. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun. 2012;3:1268.

    Article  PubMed  CAS  Google Scholar 

  73. Peine M, Rausch S, Helmstetter C, Frohlich A, Hegazy AN, Kuhl AA, Grevelding CG, Hofer T, Hartmann S, Lohning M. Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol. 2013;11(8):e1001633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, Carson WF, Cavassani KA, Li X, Lukacs NW, et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114(15):3244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deaton AM, Cook PC, De Sousa D, Phythian-Adams AT, Bird A, MacDonald AS. A unique DNA methylation signature defines a population of IFN-gamma/IL-4 double-positive T cells during helminth infection. Eur J Immunol. 2014;44(6):1835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tough DF, Tak PP, Tarakhovsky A, Prinjha RK. Epigenetic drug discovery: breaking through the immune barrier. Nat Rev Drug Discov. 2016;15(12):835–53.

    Article  CAS  PubMed  Google Scholar 

  77. Evans CM, Jenner RG. Transcription factor interplay in T helper cell differentiation. Brief Funct Genomics. 2013;12(6):499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, Zhao D, Liu Y, Wang C, Zhang X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525(7569):389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol. 1998;18(9):5166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Youngblood B, Reich NO. The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics. 2008;3(3):149–56.

    Article  PubMed  Google Scholar 

  81. Youngblood B, Noto A, Porichis F, Akondy RS, Ndhlovu ZM, Austin JW, Bordi R, Procopio FA, Miura T, Allen TM, et al. Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J Immunol. 2013;191(2):540–4.

    Article  CAS  PubMed  Google Scholar 

  82. Nakayama-Hosoya K, Ishida T, Youngblood B, Nakamura H, Hosoya N, Koga M, Koibuchi T, Iwamoto A, Kawana-Tachikawa A. Epigenetic repression of interleukin 2 expression in senescent CD4+ T cells during chronic HIV type 1 infection. J Infect Dis. 2015;211(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  83. Chandran A, Antony C, Jose L, Mundayoor S, Natarajan K, Kumar RA. Mycobacterium tuberculosis infection induces HDAC1-mediated suppression of IL-12B gene expression in macrophages. Front Cell Infect Microbiol. 2015;5:90.

    Google Scholar 

  84. Pennini ME, Pai RK, Schultz DC, Boom WH, Harding CV. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J Immunol. 2006;176(7):4323–30.

    Article  CAS  PubMed  Google Scholar 

  85. Kincaid EZ, Ernst JD. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-gamma without inhibiting STAT1 function. J Immunol. 2003;171(4):2042–9.

    Article  CAS  PubMed  Google Scholar 

  86. Holla S, Prakhar P, Singh V, Karnam A, Mukherjee T, Mahadik K, Parikh P, Singh A, Rajmani RS, Ramachandra SG, et al. MUSASHI-mediated expression of JMJD3, a H3K27me3 demethylase, is involved in foamy macrophage generation during mycobacterial infection. PLoS Pathog. 2016;12(8):e1005814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ghorpade DS, Holla S, Sinha AY, Alagesan SK, Balaji KN. Nitric oxide and KLF4 protein epigenetically modify class II transactivator to repress major histocompatibility complex II expression during Mycobacterium bovis bacillus Calmette-Guerin infection. J Biol Chem. 2013;288(28):20592–606.

    Article  CAS  Google Scholar 

  88. Sharma G, Sowpati DT, Singh P, Khan MZ, Ganji R, Upadhyay S, Banerjee S, Nandicoori VK, Khosla S. Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection. Sci Rep. 2016;6:25006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wei M, Wang L, Wu T, Xi J, Han Y, Yang X, Zhang D, Fang Q, Tang B. NLRP3 activation was regulated by DNA methylation modification during Mycobacterium tuberculosis infection. Biomed Res Int. 2016;2016:4323281.

    CAS  Google Scholar 

  90. Wang Y, Zhong H, Xie X, Chen CY, Huang D, Shen L, Zhang H, Chen ZW, Zeng G. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112(29):E3883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Malherbe ST, Shenai S, Ronacher K, Loxton AG, Dolganov G, Kriel M, Van T, Chen RY, Warwick J, Via LE, et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med. 2016;22(10):1094–100.

    Google Scholar 

  92. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O’Neill LA, Xavier RJ. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Mandalakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DiNardo, A., Mandalakas, A.M. (2019). Potential Immunology, Transcriptomics and Epigenomic Prediction Tools of the Future to Improve tuberculosis Control. In: Cirillo, J., Kong, Y. (eds) Tuberculosis Host-Pathogen Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25381-3_10

Download citation

Publish with us

Policies and ethics