Skip to main content

Advertisement

Log in

The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis

  • Perspective
  • Published:

From Nature Immunology

View current issue Submit your manuscript

Abstract

Blood transcriptomics analysis of tuberculosis has revealed an interferon-inducible gene signature that diminishes in expression after successful treatment; this promises improved diagnostics and treatment monitoring, which are essential for the eradication of tuberculosis. Sensitive radiography revealing lung abnormalities and blood transcriptomics have demonstrated heterogeneity in patients with active tuberculosis and exposed asymptomatic people with latent tuberculosis, suggestive of a continuum of infection and immune states. Here we describe the immune response to infection with Mycobacterium tuberculosis revealed through the use of transcriptomics, as well as differences among clinical phenotypes of infection that might provide information on temporal changes in host immunity associated with evolving infection. We also review the diverse blood transcriptional signatures, composed of small sets of genes, that have been proposed for the diagnosis of tuberculosis and the identification of at-risk asymptomatic people and suggest novel approaches for the development of such biomarkers for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Heterogeneity of outcomes after exposure to M. tuberculosis.
Fig. 2: The immune response to M. tuberculosis infection.
Fig. 3: Modular host gene signatures in tuberculosis and in other infections and diseases.

Similar content being viewed by others

References

  1. World Health Organization. Global Tuberculosis Report (World Health Organization, 2017).

  2. O’Garra, A. et al. The immune response in tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).

    Article  PubMed  Google Scholar 

  3. Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Primers. 2, 16076 (2016).

    Article  PubMed  Google Scholar 

  4. Davies, P. D. & Pai, M. The diagnosis and misdiagnosis of tuberculosis. Int. J. Tuberc. Lung Dis. 12, 1226–1234 (2008).

    CAS  PubMed  Google Scholar 

  5. Pfyffer, G. E., Cieslak, C., Welscher, H. M., Kissling, P. & Rüsch-Gerdes, S. Rapid detection of mycobacteria in clinical specimens by using the automated BACTEC 9000 MB system and comparison with radiometric and solid-culture systems. J. Clin. Microbiol. 35, 2229–2234 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Behr, M. A., Edelstein, P. H. & Ramakrishnan, L. Revisiting the timetable of tuberculosis. Br. Med. J. 362, k2738 (2018).

  7. Trajman, A., Steffen, R. E. & Menzies, D. Interferon-γ release assays versus tuberculin skin testing for the diagnosis of latent tuberculosis infection: an overview of the evidence. Pulm. Med. 2013, 601737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Barry, C. E. III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esmail, H. et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-d-glucose positron emission and computed tomography. Nat. Med. 22, 1090–1093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dowdy, D. W., Basu, S. & Andrews, J. R. Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for tuberculosis. Am. J. Respir. Crit. Care Med. 187, 543–551 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Cooper, A. M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooper, A. M., Mayer-Barber, K. D. & Sher, A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol. 4, 252–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Esmail, H. et al. The immune response to Mycobacterium tuberculosis in HIV-1-coinfected persons. Annu. Rev. Immunol. 36, 603–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, P. L. et al. PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathog. 12, e1005739 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martineau, A. R. Old wine in new bottles: vitamin D in the treatment and prevention of tuberculosis. Proc. Nutr. Soc. 71, 84–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Dye, C. After 2015: infectious diseases in a new era of health and development. Phil. Trans. R. Soc. Lond. B 369, 20130426 (2014).

    Article  Google Scholar 

  21. Llewelyn, M., Cropley, I., Wilkinson, R. J. & Davidson, R. N. Tuberculosis diagnosed during pregnancy: a prospective study from London. Thorax 55, 129–132 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Redford, P. S. et al. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J. Infect. Dis. 209, 270–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bloom, C. I. et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One 7, e46191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maertzdorf, J. et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun. 12, 15–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Maertzdorf, J. et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS One 6, e26938 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maertzdorf, J. et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc. Natl. Acad. Sci. USA 109, 7853–7858 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ottenhoff, T. H. et al. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One 7, e45839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bloom, C. I. et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS One 8, e70630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cliff, J. M. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J. Infect. Dis. 207, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Berry, M. P., Blankley, S., Graham, C. M., Bloom, C. I. & O’Garra, A. Systems approaches to studying the immune response in tuberculosis. Curr. Opin. Immunol. 25, 579–587 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Blankley, S. et al. The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis. PLoS One 11, e0162220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roe, J. K. et al. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis. JCI Insight 1, e87238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scriba, T. J. et al. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLoS Pathog. 13, e1006687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Joosten, S. A., Fletcher, H. A. & Ottenhoff, T. H. A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. PLoS One 8, e73230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blankley, S. et al. A 380-gene meta-signature of active tuberculosis compared with healthy controls. Eur. Respir. J. 47, 1873–1876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sambarey, A. et al. Meta-analysis of host response networks identifies a common core in tuberculosis. NPJ Syst. Biol. Appl. 3, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singhania, A. et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat. Commun. 9, 2308 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dorhoi, A. et al. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol. 44, 2380–2393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl. Acad. Sci. USA 98, 5752–5757 (2001).

    Article  CAS  Google Scholar 

  42. Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res. 25, 694–701 (2005).

    Article  CAS  Google Scholar 

  43. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McNab, F. W. et al. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. J. Immunol. 191, 1732–1743 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Moreira-Teixeira, L., Mayer-Barber, K., Sher, A. & O’Garra, A. Type I interferons in tuberculosis: foe and occasionally friend. J. Exp. Med. 215, 1273–1285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ordway, D. et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J. Immunol. 179, 522–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Gideon, H. P., Skinner, J. A., Baldwin, N., Flynn, J. L. & Lin, P. L. Early whole blood transcriptional signatures are associated with severity of lung inflammation in cynomolgus macaques with Mycobacterium tuberculosis infection. J. Immunol. 197, 4817–4828 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Carmona, J. et al. Mycobacterium tuberculosis strains are differentially recognized by TLRs with an impact on the immune response. PLoS One 8, e67277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collins, A. C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wassermann, R. et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17, 799–810 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wiens, K. E. & Ernst, J. D. The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog. 12, e1005809 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. McNab, F. W. et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J. Immunol. 193, 3600–3612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antonelli, L. R. et al. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest. 120, 1674–1682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Domaszewska, T. et al. Concordant and discordant gene expression patterns in mouse strains identify best-fit animal model for human tuberculosis. Sci. Rep. 7, 12094 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Namasivayam, S. et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome 5, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wipperman, M. F. et al. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci. Rep. 7, 10767 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang, G. et al. A proline deletion in IFNAR1 impairs IFN-signaling and underlies increased resistance to tuberculosis in humans. Nat. Commun. 9, 85 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Bogunovic, D. et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, D. Y. et al. Single-chain antibody against human lipocalin-type prostaglandin D synthase: construction, expression, purification, and activity assay. Biochemistry 73, 702–710 (2008).

    CAS  PubMed  Google Scholar 

  62. Divangahi, M., King, I. L. & Pernet, E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol. 36, 307–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Moreira-Teixeira, L. et al. T cell-derived IL-10 impairs host resistance to Mycobacterium tuberculosis infection. J. Immunol. 199, 613–623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beamer, G. L. et al. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J. Immunol. 181, 5545–5550 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Redford, P. S., Murray, P. J. & O’Garra, A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 4, 261–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Huynh, J. P. et al. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J. Exp. Med. 215, 1823–1838 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moreira-Teixeira, L. et al. Type I IFN inhibits alternative macrophage activation during Mycobacterium tuberculosis infection and leads to enhanced protection in the absence of IFN-γ signaling. J. Immunol. 197, 4714–4726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ward, C. M. et al. Adjunctive treatment of disseminated Mycobacterium avium complex infection with interferon α-2b in a patient with complete interferon-γ receptor R1 deficiency. Eur. J. Pediatr. 166, 981–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Lin, P. L. et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect. Immun. 77, 4631–4642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cadena, A. M., Fortune, S. M. & Flynn, J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Capuano, S. V. III et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun. 71, 5831–5844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Esmail, H. et al. Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proc. Natl. Acad. Sci. USA 115, E964–E973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Charalambous, S. et al. Contribution of reinfection to recurrent tuberculosis in South African gold miners. Int. J. Tuberc. Lung Dis. 12, 942–948 (2008).

    CAS  PubMed  Google Scholar 

  76. Uys, P. et al. The risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community. PLoS One 10, e0144487 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. van Helden, P. D., Warren, R. M. & Uys, P. Predicting reinfection in tuberculosis. J. Infect. Dis. 197, 172–173 (2008).

  78. van Rie, A. et al. Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am. J. Respir. Crit. Care Med. 172, 636–642 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  79. van Rie, A. et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N. Engl. J. Med. 341, 1174–1179 (1999).

    Article  PubMed  Google Scholar 

  80. van Rie, A. et al. Transmission of a multidrug-resistant Mycobacterium tuberculosis strain resembling “strain W” among noninstitutionalized, human immunodeficiency virus-seronegative patients. J. Infect. Dis. 180, 1608–1615 (1999).

    Article  PubMed  Google Scholar 

  81. Verver, S. et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am. J. Respir. Crit. Care Med. 171, 1430–1435 (2005).

    Article  PubMed  Google Scholar 

  82. Warren, R. M. et al. Patients with active tuberculosis often have different strains in the same sputum specimen. Am. J. Respir. Crit. Care Med. 169, 610–614 (2004).

    Article  PubMed  Google Scholar 

  83. Diel, R., Loddenkemper, R. & Nienhaus, A. Evidence-based comparison of commercial interferon-γ release assays for detecting active TB: a metaanalysis. Chest 137, 952–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Elkington, P., Tebruegge, M. & Mansour, S. Tuberculosis: an infection-initiated autoimmune disease? Trends Immunol. 37, 815–818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Clayton, K., Polak, M. E., Woelk, C. H. & Elkington, P. Gene expression signatures in tuberculosis have greater overlap with autoimmune diseases than with infectious diseases. Am. J. Respir. Crit. Care Med. 196, 655–656 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mourik, B. C., Lubberts, E., de Steenwinkel, J. E. M., Ottenhoff, T. H. M. & Leenen, P. J. M. Interactions between type 1 interferons and the Th17 response in tuberculosis: lessons learned from autoimmune diseases. Front. Immunol. 8, 294 (2017).

  87. Koth, L. L. et al. Sarcoidosis blood transcriptome reflects lung inflammation and overlaps with tuberculosis. Am. J. Respir. Crit. Care Med. 184, 1153–1163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaforou, M. et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med. 10, e1001538 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Anderson, S. T. et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med. 370, 1712–1723 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maertzdorf, J. et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol. Med. 8, 86–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir. Med. 4, 213–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leong, S. et al. Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from south India. Tuberculosis 109, 41–51 (2018).

    Article  PubMed  Google Scholar 

  93. Pan, L. et al. Genome-wide transcriptional profiling identifies potential signatures in discriminating active tuberculosis from latent infection. Oncotarget 8, 112907–112916 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Walter, N. D. et al. Blood transcriptional biomarkers for active tuberculosis among patients in the United States: a case-control study with systematic cross-classifier evaluation. J. Clin. Microbiol. 54, 274–282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Walter, N. D., Reves, R. & Davis, J. L. Blood transcriptional signatures for tuberculosis diagnosis: a glass half-empty perspective. Lancet Respir. Med. 4, e28 (2016).

    Article  PubMed  Google Scholar 

  96. Cox, H. et al. Delays and loss to follow-up before treatment of drug-resistant tuberculosis following implementation of Xpert MTB/RIF in South Africa: a retrospective cohort study. PLoS Med. 14, e1002238 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cox, H. S. et al. The need to accelerate access to new drugs for multidrug-resistant tuberculosis. Bull. World Health Organ. 93, 491–497 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bang, N. D. et al. Clinical presentations, diagnosis, mortality and prognostic markers of tuberculous meningitis in Vietnamese children: a prospective descriptive study. BMC Infect. Dis. 16, 573 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Suliman, S. et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am. J. Respir. Crit. Care Med. (2018).

  100. Cliff, J. M., Kaufmann, S. H., McShane, H., van Helden, P. & O’Garra, A. The human immune response to tuberculosis and its treatment: a view from the blood. Immunol. Rev. 264, 88–102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.S., R.J.W. and A.O.G. were funded by The Francis Crick Institute (Crick 10126 and Crick 10468 for A.O.G. and A.S., and Crick 10128 for R.J.W.), which receives its core funding from Cancer Research UK, the UK Medical Research Council and the Wellcome Trust. R.J.W. was supported by the Wellcome Trust (104803 and 203135); MRC South Africa under strategic health innovation partnerships EDCTP SR1A 2015-1065 and the US National Institutes of Health (019 AI 111276 and UO1AI115940). P.H. was supported by NIHR Leicester Biomedical Research Centre and the University of Leicester. M.R. was supported by Medical Diagnostic Discovery Department, bioMérieux SA, Marcy l’Etoile, France. The views expressed are those of the author(s) and not necessarily those of the NHS the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne O’Garra.

Ethics declarations

Competing interests

The authors declare no competing interests. Patents previously held by A.O.G. on the use of the blood transcriptome for the diagnosis of tuberculosis have lapsed and have been discontinued. M.R. is an employee of BioMérieux, which has not filed patents related to this study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhania, A., Wilkinson, R.J., Rodrigue, M. et al. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat Immunol 19, 1159–1168 (2018). https://doi.org/10.1038/s41590-018-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0225-9

  • Springer Nature America, Inc.

This article is cited by

Navigation