Skip to main content

Theories and Concepts in Individual-Based Forest Ecology

  • Chapter
  • First Online:
Individual-based Methods in Forest Ecology and Management

Abstract

Ecology is a comparatively young field of natural sciences. It has gained considerable influence and popularity over the last five to six decades. In ecology, interactions between individuals and environmental factors but also among the individuals of a population play an important role. The understanding of forest ecology is important in itself and prepares the ground for sustainable forest management. A number of conceptual theories have been developed in ecology to explain observed phenomena such as the natural maintenance of species diversity in tropical forest ecosystems. These form the background to individual-based ecology and the quantitative methods described in this book are often used to test them or to develop new ones. Finally tree mechanics offer different insights on interaction processes and tree growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abetz P (1976) Beiträge zum Baumwachstum: Der \(h/d\)-Wert – mehr als ein Schlankheitsgrad! [On tree growth – \(h/d\) ratio – more than a measure of slenderness]. Forst- und Holzwirt 31:389–393

    Google Scholar 

  • Abetz P, Klädtke J (2002) The target tree management system. Forstwissenschaftliches Centralblatt 121:73–82

    Article  Google Scholar 

  • Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Studies in the organic production, structure, increment and yield of forest stands. Pergamon Press, Oxford, 506 p

    Chapter  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic an abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Begon M, Harper JL, Townsend CR (2006) Ecology: individuals, populations and communities, 3rd edn. Blackwell Science, Oxford, 1092 p

    Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bohn FJ, Huth A (2017) The importance of forest structure to biodiversity-productivity relationships. R Soc Open Sci 4:160521

    Article  PubMed  PubMed Central  Google Scholar 

  • Brüchert F, Gardiner B (2006) The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce ( Picea sitchensis, Pinaceae). Am J Bot 93:1512–1521

    Article  PubMed  Google Scholar 

  • Bulleri F, Bruno JF, Silliman BR, Stachowicz JJ (2016) Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct Ecol 30:70–78

    Article  Google Scholar 

  • Burschel P, Huss J (1997) Grundriss des Waldbaus [Outline of silviculture]. Parey Buchverlag, Berlin, 488 p

    Google Scholar 

  • Burton PJ (1993) Some limitations inherent to static indices of plant competition. Can J For Res 23:2141–2152

    Article  Google Scholar 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 8:412–420

    Article  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago, 216 p

    Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol Syst 31:343–366

    Article  Google Scholar 

  • Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102:845–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellat. Ecology 42:710–723

    Article  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forests. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands, pp 298–312

    Google Scholar 

  • Daleo P, Iribarne O (2009) Beyond competition: the stress-gradient hypothesis tested in plant-herbivore interactions. Ecology 90:2368–2374

    Article  PubMed  Google Scholar 

  • Damgaard C (2011) Measuring competition in plant communities where it is difficult to distinguish individual plants. Comput Ecol Softw 1:125–137

    Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Murray, London, 576 p

    Google Scholar 

  • de Wit CT (1960) On competition, vol 66. Verslagen van Landbouwkundige Onderzoekingen (Agricultural Research Reports), pp 1–82

    Google Scholar 

  • Dean TJ (2004) Basal area increment and growth efficiency as functions of canopy dynamics and stem mechanics. For Sci 50:106–116

    Google Scholar 

  • Dean TJ, Long JN (1986) Validity of constant-stress and elastic instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot 54:833–840

    Article  Google Scholar 

  • Dean TJ, Roberts SD, Gilmore DW, Maguire DA, Long JN, O’Hara KL, Seymore RS (2002) An evaluation of the uniform stress hypothesis based on stem geometry in selected North American conifers. Trees 16:559–568

    Article  Google Scholar 

  • Dean TJ, Jerez M, Cao QV (2012) A simple stand growth model based on canopy dynamics and biomechanics. For Sci 59:335–344

    Google Scholar 

  • Díaz-Sierra R, Verwijmeren M, Rietkerk M, Resco de Dios V, Baudena M (2017) A new family of standardized and symmetric indices for measuring the intensity and importance of plant neighbour effects. Methods Ecol Evol 8:580–591

    Article  Google Scholar 

  • Duchesneau R, Lesage I, Messier C, Morin H (2001) Effects of light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir saplings. For Ecol Manag 140:215–225

    Article  Google Scholar 

  • Ettinger A, HilleRisLambers J (2017) Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob Chang Biol 23:3921–3933

    Article  PubMed  Google Scholar 

  • Falster DF, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • Fernández-Tschieder E, Binkley D (2018) Linking competition with growth dominance and production ecology. For Ecol Manag 414:99–107

    Article  Google Scholar 

  • Fichtner F, Härdle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018) Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat Commun 9:1144

    Google Scholar 

  • Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Ford ED (1975) Competition and stand structure in some even-aged plant monocultures. J Ecol 63:311–333

    Article  Google Scholar 

  • Freckleton RP, Watkinson AR (2001) Asymmetric competition between plant species. Funct Ecol 15:615–623

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore, 184 p

    Google Scholar 

  • Gladwell M (2000) The tipping point: how little things can make a big difference. Abacus, New York, 288 p

    Google Scholar 

  • Grassi G, Giannini R (2005) Influence of light and competition on crown and shoot morphological parameters of Norway spruce and silver fir saplings. Ann For Sci 62:269–274

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fischer C, Roscher C, Landais D, Ravel O, Devidal S, Roy J, Gessler A, Buchmann N, Weigelt A, Hildebrandt A (2018) Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Funct Ecol 32:214–227

    Article  Google Scholar 

  • Hale SE (2003) The effect of thinning intensity on the below-canopy light environment in a Sitka spruce plantation. For Ecol Manag 179:341–349

    Article  Google Scholar 

  • Hamilton GJ, Christie JM (1973) Construction and application of stand yield models. Forestry commission research and development paper, vol 96. Edinburgh, 120 p

    Google Scholar 

  • Harper JL (1961) Approaches to the study of plant competition. Symp Soc Exp Biol 15:1–39

    Google Scholar 

  • Hasenauer H (1997) Dimensional relationships of open-grown trees in Austria. For Ecol Manag 96:197–206

    Article  Google Scholar 

  • Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang X, Liu X, Pei K, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen X-Y, Chesters D, Ding B-Y, Durka W, Erfmeier A, Fang J, Fischer M, Guo L-D, Guo D, Gutknecht JLM, He J-S, He C-L, Hector A, Hönig L, Hu R-Y, Klein A-M, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi X, Tan M-Z, Tang Z, Trogisch S, Wang Z, Welk E, Wirth C, Wubet T, Xiang W, Yu M, Yu X-D, Zhang J, Zhang S, Zhang N, Zhou H-Z, Zhu C-D, Zhu L, Bruelheide H, Ma K, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362:80–83

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding Remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B (2018) Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett 21:763–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Judson O (1994) The rise of the individual-based model in ecology. Trends Ecol Evol 9:9–14

    Article  CAS  PubMed  Google Scholar 

  • Keddy PA (1989) Competition. Chapman and Hall, London, 552 p

    Book  Google Scholar 

  • Keddy PA (2017) Plant ecology: Origins, processes, consequences, 2nd edn. Cambridge University Press, Cambridge, 624 p

    Google Scholar 

  • Kikuzawa K, Umeki K (1996) Effect of canopy structure on degree of asymmetry of competition in two forest stands in Northern Japan. Ann Bot 77:565–571

    Article  Google Scholar 

  • Kimmins JP (2004) Forest ecology - a foundation for sustainable management, 3rd edn. Pearson Education Prentice Hall, Upper Saddle River, 700 p

    Google Scholar 

  • Kramer H (1988) Waldwachstumslehre [Forest growth and yield science]. Verlag Paul Parey, Hamburg and Berlin, 374 p

    Google Scholar 

  • Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Langsæter A (1941) Om tynning i enaldret gran- og furuskog [About thinnings in even-aged spruce and pine forests]. Medd Nor Skogforsoksves 8:131–216

    Google Scholar 

  • LeMay V, Pommerening A, Marshall P (2009) Spatio-temporal structure of multi-storied, multi-aged interior Douglas fir (Pseudotsuga menziesii var. glauca) stands. J Ecol 97:1062–1074

    Article  Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Berger U, Grimm V, Quian-Ru J (2012) Differences between symmetric and asymmetric facilitation matter: exploring the interplay between the modes of positive and negative plant interactions. J Ecol 100:1482–1491

    Article  Google Scholar 

  • Lin Y, Berger U, Grimm V, Huth F, Weiner J (2013) Plant interactions alter the predictions of metabolic scaling theory. PLOS ONE 8:e57612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundqvist L, Elfving B (2010) Influence of biomechanics and growing space on tree growth in young Pinus sylvestris stands. For Ecol Manag 260:2143–2147

    Article  Google Scholar 

  • MacArthur RH (1965) Patterns of species diversity. Biol Rev Camb Philos Soc 40:510–533

    Article  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Matias MG, Combe M, Barbera C, Mouquet N (2013) Ecological strategies shape the insurance potential of biodiversity. Front Microbiol 3:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattheck C, Breloer H (1994) The body language of trees – a handbook for failure analysis. HMSO, London

    Google Scholar 

  • Messier C, Puettmann KJ, Coates KD (2013) Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Routledge, Oxon, 353 p

    Google Scholar 

  • Metslaid M, Jõgiste K, Nikinmaa E, Moser WK, Porcar-Castell A (2007) Tree variables related to growth response and acclimation of advance regeneration of Norway spruce and other coniferous species after release. For Ecol Manag 250:56–63

    Article  Google Scholar 

  • Metzger K (1893) Der Wind als maßgebender Faktor für das Wachstum der Waldbäume [Wind as a crucial factor for the growth of forest trees]. Mündener Forstliche Hefte 3:35–86

    Google Scholar 

  • Mitchell SJ (2000) Stem growth responses in Douglas fir and Sitka spruce following thinning: implications for assessing windfirmness. For Ecol Manag 135:105–114

    Article  Google Scholar 

  • Morowitz HJ (1968) Energy flow in biology. Academic Press, New York, 234 p

    Google Scholar 

  • Murphy SJ, Xu K, Comita LS (2016) Tree seedling richness, but not neighbourhood composition, influences insect herbivory in a temperate deciduous forest community. Ecol Evol 6:6310–6319

    Article  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Spatz H-Ch (2004) Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc Natl Acad Sci USA 104:15661–15663

    Article  CAS  Google Scholar 

  • Nilson A (1973) Hooldusraiete arvutusliku projekteerimise teooriast [On the theory of programming thinnings]. EPA teaduslike tööde kogumik 89:136–142

    Google Scholar 

  • Nilson A (2006) Modeling dependence between the number of trees and mean tree diameter of stands, stand density and stand sparsity. In: Cieszewski CC, Straub M (eds) Proceedings of the second international conference on forest measurements and quantitative methods and management & The 2004 southern mensurationists meeting. Athens GA, pp 74–94

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics, Update edn. Wiley, New York, 520 p

    Google Scholar 

  • Otto H-J (1994) Waldökologie [Forest ecology]. Ulmer, Stuttgart, 391 p

    Google Scholar 

  • Perry DA, Oren R, Hart SC (2008) Forest ecosystems, 2nd edn. The Johns Hopkins University Press, Baltimore, 632 p

    Google Scholar 

  • Philip MS (1994) Measuring trees and forests, 2nd edn. CABI Publishing, Wallingford, 310 p

    Google Scholar 

  • Piao T, Comita LS, Jin G, Kim JH (2013) Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia 172:207–217

    Article  PubMed  Google Scholar 

  • Pierik R, Mommer L, Voesenek LACJ (2013) Molecular mechanisms of plant competition: neighbour detection and response strategies. Funct Ecol 27:841–853

    Article  Google Scholar 

  • Pommerening A, Sánchez Meador AJ (2018) Tamm review: tree interactions between myth and reality. For Ecol Manag 428:164–176

    Article  Google Scholar 

  • Pommerening A, Uria-Diez J (2017) Do large trees tend towards high species mingling? Ecol Inform 42:139–147

    Article  Google Scholar 

  • Pommerening A, Pallarés Ramos C, Kȩdziora W, Haufe J (2018) Rating experiments in forestry: how much agreement is there in tree marking? PLOS ONE 13:e0194747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pretzsch H (1996) Erfassung des Pflegezustandes von Waldbeständen bei der zweiten Bundeswaldinventur [Monitoring forest management in the second national forest inventory of Germany]. AFZ/DerWald 15:820–823

    Google Scholar 

  • Pretzsch H (2006) Species-specific allometric scaling under self-thinning: Evidence from long-term plots in forest stands. Oecologia 146:572–583

    Article  PubMed  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield: From measurement to model. Springer, Heidelberg, 664 p

    Google Scholar 

  • Pretzsch H (2010) Re-evaluation of allometry: state-of-the-art and perspective regarding individuals and stands of woody plants. In: Lüttge U, Beyschlag W, Nüdel B, Francis D (eds) Progress in Botany, vol 71. Springer, Heidelberg, pp 339–369

    Google Scholar 

  • Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and stand density index. For Sci 51:304–320

    Google Scholar 

  • Pretzsch H, Biber P (2016) Tree species mixing can increase maximum stand density. Can J For Res 46:1179–1193

    Article  Google Scholar 

  • Rajala T, Olhede SC, Murrell DJ (2018) When do we have the power to detect biological interactions in spatial point patterns? J Ecol 107:711–721

    Article  PubMed  PubMed Central  Google Scholar 

  • Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93:1546–1565

    Article  PubMed  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Röhrig E, Bartsch N, von Lüpke B (2006) Waldbau auf ökologischer Grundlage [Silviculture on an ecological basis]. Verlag Eugen Ulmer Stuttgart, Stuttgart, 479 p

    Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Schmid B, Hector A, Saha P, Loreau M (2008) Biodiversity effects and transgressive overyielding. J Plant Ecol 1:95–102

    Article  Google Scholar 

  • Schmidt M (2001) Prognosemodelle für ausgewählte Holzqualitätsmerkmale wichtiger Baumarten [Modelling timber quality of important tree species]. PhD thesis, Göttingen University, Göttingen, 302 p

    Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  CAS  PubMed  Google Scholar 

  • Schütz JP (2001) Der Plenterwald und weitere Formen strukturierter und gemischter Wälder [The selection forest and other types os structured and mixed species forests]. Parey Buchverlag, Berlin, 207 p

    Google Scholar 

  • Seifan T, Seifan M (2015) Symmetry and range limits in importance indices. Ecol Evol 5:4517–4522

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw JD, Long JN (2007) A density management diagram for longleaf pine stands. South J Appl For 31:28–38

    Article  Google Scholar 

  • Shinozaki K, Kira T (1956) Intraspecific competition among higher plants VII. Logistic theory of the C-D effect. J Inst Polytech Osaka City Univ D7:35–72

    Google Scholar 

  • Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31

    Article  Google Scholar 

  • Smith WR, Farrar RM Jr, Murphy RA, Yeiser JL, Meldahl RS, Kush JS (1992) Crown and basal area relationships of open-grown southern pines for modelling competition and growth. Can J For Res 22:341–347

    Article  Google Scholar 

  • Spatz H-C, Brüchert F (2000) Basic biomechanics of self-supporting plants: Wind loads and gravitational loads on a Norway spruce tree. For Ecol Manag 135:33–44

    Article  Google Scholar 

  • Spiecker H (1994) Wachstum und Erziehung wertvoller Kirschen. [Growth and management of valuable cherry trees] Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg, vol 181. Freiburg, 92 p

    Google Scholar 

  • Sterba H (1985) Das Ertragsniveau und der maximale Stand-Density-Index nach Reineke [Yield level and maximum stand density index according to Reineke]. Centralblatt für das gesamte Forstwesen 102:78–86

    Google Scholar 

  • Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33:1022–1034

    Google Scholar 

  • Sterba H (2010) Forstliche Ertragslehre [Forest growth and yield science]. Lecture notes. BOKU University Vienna, Vienna, 120 p

    Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and points fields. Wiley, Chichester, 406 p

    Google Scholar 

  • Suzuki SN, Kachi N, Suzuki J-I (2008) Development of local size hierarchy causes regular spacing of trees in an aven-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function. Ann Bot 102:435–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas PA, Packham JR (2007) Ecology of woodlands and forests: description, dynamics and diversity. Cambridge University Press, Cambridge, 528 p

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, 310 p

    Google Scholar 

  • Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A (2016) Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc R Soc B 283:20160536

    Article  PubMed  PubMed Central  Google Scholar 

  • van Laar A, Akça A (2007) Forest mensuration. Managing forest ecosystems, vol 13. Springer. Dordrecht, 383 p

    Book  Google Scholar 

  • Vogt J, Lin Y, Pranchai A, Frohberg P, Mehlig U, Berger U (2014) The importance of conspecific facilitation during recruitment and regeneration: a case study in degraded mangroves. Basic Appl Ecol 15:651–660

    Article  Google Scholar 

  • von Gadow K (1986) Observation on self-thinning in pine plantations. S Afr J Sci 82:364–368

    Google Scholar 

  • von Gadow K, Bredenkamp B (1992) Forest management. Academia, Pretoria, 151 p

    Google Scholar 

  • Vospernik S, Sterba H (2015) Do competition-density rule and self-thinning rule agree? Ann For Sci 72:379–390

    Article  Google Scholar 

  • Wang H, Peng H, Hui G, Hu Y, Zhao Z (2018) Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Sci Rep 8:9149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364

    Article  CAS  PubMed  Google Scholar 

  • Weiner J, Freckleton RP (2010) Constant final yield. Annu Rev Ecol Evol Syst 41:173–192

    Article  Google Scholar 

  • Weiner J, Solbrig OT (1984) The meaning and measurement of size hierarchies in plant populations. Oecologia 61:334–336

    Article  PubMed  Google Scholar 

  • Weiner J, Wright DB, Castro S (1997) Symmetry of below-ground competition between Kochia scoparia individuals. Oikos 79:85–91

    Article  Google Scholar 

  • Weiner J, Stoll P, Muller-Landau H, Jasentuliyana A (2001) The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am Nat 158:438–450

    Article  CAS  PubMed  Google Scholar 

  • Wills C, Condit R, Foster RB, Hubbell SP (1997) Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proc Natl Acad Sci USA 94:1252–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  PubMed  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Zhang X, Zhang C, Zhao X, von Gadow K (2016) Effects of density dependence in a temperate forest in northeastern China. Sci Rep 6:32844

    Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. (Intraspecific competition among higher plants XI). J Inst Polytech Osaka City Univ Ser D 14:107–129

    Google Scholar 

  • Zeide B (2005) How to measure density. Trees Struct Funct 19:1–4

    Article  Google Scholar 

  • Zeide B (2010) Comparison of self-thinning models: an exercise in reasoning. Trees Struct Funct 24:1117–1126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Pommerening .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pommerening, A., Grabarnik, P. (2019). Theories and Concepts in Individual-Based Forest Ecology. In: Individual-based Methods in Forest Ecology and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-24528-3_2

Download citation

Publish with us

Policies and ethics