Skip to main content

Chemical and Natural Pesticides in IPM: Side-Effects and Application

  • Chapter
  • First Online:
Integrated Pest and Disease Management in Greenhouse Crops

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

The regulation for the registration and use of pesticides, also including natural products, currently in place in the different countries, although not completely normalized, has become very stringent in all industrialized countries, leading to a strong reduction in the number of active ingredients available on the market and to a severe reorganization of the agrochemical industry, which is shrinking. Most of greenhouse crops are ranked among minor crops, and some pesticide usages, such as seed dressing, are considered a minor use. Although the use of pesticides for the management of most pests and diseases of greenhouse crops remains important and often crucial, in general, a limited number of them is available for minor crops and/or minor uses. The choice of the chemical and its application methods is very important in order to guarantee its compatibility with the use of other control methods, particularly biocontrol agents, its control efficiency, and prevention of residues being above the maximum residue level (MRL). Aspects such as selectivity, phytotoxicity, development of pesticide resistance, and residues are critically discussed. Special attention is also devoted to fumigants and natural products, including resistance inducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajouz S, Nicot PC, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59:556–566

    Article  CAS  Google Scholar 

  • Alexandersoon E, Mulugeta T, Lankienen A, Liljerot E, Anderesoon E (2016) Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. Int J Mol Sci 17:1–25

    Google Scholar 

  • Balsari P, Oggero C, Bozzer C, Marucco P (2012) An autonomous self-propelled sprayer for safer pesticide application in glasshouse. Asp Appl Biol 114:197–204

    Google Scholar 

  • Baroffio CA, Siegfried W, Hilber UW (2003) Long-term monitoring for resistance of Botrytis cinerea in anylinopyrimidine phenylpyrrole and hydroxyanilide fungicides in Switzerland. Plant Dis 87:662–666

    Article  CAS  PubMed  Google Scholar 

  • Barrière V, Lecompte F, Nicot PC, Maisonneuve B, Tchamitchian M, Lescourret F (2014) Lettuce cropping with less pesticides. A review. Agron Sustain Dev 34:175–198

    Article  CAS  Google Scholar 

  • Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    Article  CAS  PubMed  Google Scholar 

  • Blumel S, Matthews GA, Grinstein A, Elad Y (1999) Pesticides in IPM: selectivity, side-effects, application and resistance problems. In: Albajes R, Gullino ML, Van Lenteren J, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Press, Dordretch, pp 150–167

    Chapter  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Ippolito F, Scala F (2015) A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. J Plant Pathol 97:223–234

    Google Scholar 

  • Bostanian NJ, Belanger A (1985) The toxicity of three pyrethroids to Amblyseius fallacis (Garman) (Acari: Phytoseiidae) and their residues on apple foliage. Agric Ecosyst Environ 14:243–250

    Article  CAS  Google Scholar 

  • Brent KJ, Hollomon DW (1998) Fungicide resistance: the assessment of risk. FRAC Monograph 2

    Google Scholar 

  • Byrne FJ, Oetting RD, Bethke JA, Green C, Chamberlin J (2010) Understanding the dynamics of neonicotinoid activity in the management of Bemisia tabaci whiteflies on poinsettias. Crop Prot 29:260–266

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper J (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Castagnoli M, Angeli G, Liguori M, Forti D, Simoniet S (2002) Side effects of botanical insecticides on predatory mite Amblyseius andersoni (Chant). Anzeiger Schädlingskunde 75:122–127

    Article  Google Scholar 

  • Cloyd RA (2012) Indirect effects of pesticides on natural enemies. Pesticides – advances in chemical and botanical pesticides. InTech, Rijeka, pp 127–150

    Google Scholar 

  • Cloyd RA, Bethke JA, Cowles RS (2011) Systemic insecticides and their use in ornamental plant systems. Floriculture Ornamental Biotechnol 5:1–9

    Google Scholar 

  • Colla P, Garibaldi A, Gullino ML (2014) Consequences of European pesticide policies enforcement in soil disinfestation sector. Acta Hortic 1044:363–366

    Article  Google Scholar 

  • De Franca SM, Breda MO, Barbosa DRS, Arajo AMN, Guedes C (2017) The sublethal effects of insecticides in insects. In: Shields VDC (ed) Biological control of pest and vector insects. InTech, Rijeka, pp 23–39

    Google Scholar 

  • Deliopoulos T, Kettlewell PS, Hare MC (2010) Fungal disease suppression by inorganic salts: a review. Crop Prot 29:1059–1075

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Dianez F, Santos M, Blanco R (2002) Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). Phytoparasitica 30:529–534

    Article  CAS  Google Scholar 

  • Ebel RC, Wallace B, Elkins C (2000) Phytotoxicity of the systemic insecticide imidacloprid on tomato and cucumber in the greenhouse. HortTechnology 10:144–147

    Article  CAS  Google Scholar 

  • EFSA (2017) Reporting data on pesticide residues in food and feed according to regulation (EC) no 396/2005 (2016 data collection). EFSA J 15(5):4792. 48 pp. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2017.4792

    Google Scholar 

  • Fan F, Hamada MS, Li N, Li GQ, Luo CX (2017) Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China. Plant Dis 101:601–606

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ortuno D, Péréz-Garcia A, Chamorro M, dela Oena E, de Vicente A, Torés JA (2017) Resistance to the SDHI fungicides boscalid, fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from commercial strawberry fields in Spain. Plant Dis 101:1306–1313

    Article  PubMed  Google Scholar 

  • Forcelini BB, Sejo TE, Amiri A, Peres NA (2016) Resistance in strawberry isolates of Colletotrichum acutatum from Florida to Quinone-outside inhibitor fungicides. Plant Dis 100:2050–2056

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi A, Gilardi G, Gullino ML (2014) Critical aspects in disease management as a consequence of the evolution of soil-borne pathogens. Acta Hortic 1044:43–50

    Article  Google Scholar 

  • Garzón A, Medina P, Amor F, Viñuela E, Budia F (2015) Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere 132:87–93

    Article  PubMed  CAS  Google Scholar 

  • Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2016) Effect of different organic amendments on lettuce fusarium wilt and on selected soilborne microorganisms. Plant Pathol 65:704–712

    Article  Google Scholar 

  • Gonzales F, Tkaczuk C, Dinu MM, Fiedler Z, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89:295–311

    Article  Google Scholar 

  • Gullino ML (1982) Chemical control of Botrytis spp. In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in Botrytis research. Pudoc Scientific Publishers, 217–222

    Google Scholar 

  • Gullino ML, Bertetti D, Garibaldi A (2012) Fungicide resistance in Italian agriculture and strategies for its management. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management (), CABI, ????

    Google Scholar 

  • Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K, Rapisarda C, Williamson MS, Bass C (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 4:506–513

    Article  CAS  Google Scholar 

  • Hassall KA (1982) The chemistry of pesticides. Verlag Chemie, Weinheim

    Google Scholar 

  • Heitefull R (1975) Pflanzenschutz. George Thieme Verlag, Stuttgard

    Google Scholar 

  • Hillocks RJ (2012) Farming with fewer pesticides. EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31:85–93

    Article  Google Scholar 

  • Horowitz AR, Ellsworth PC, Ishaaya I (2009) Biorational pest control – an overview. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer Netherlands, Dordrecht, pp 1–20

    Google Scholar 

  • Hull LA, Beers EH (1985) Ecological selectivity. Modifying chemical control practices to preserve natural enemies. In: Hoy MA, Herzog DC (eds) Biological control in agricultural IPM systems. Academic, Orlando, pp 103–121

    Chapter  Google Scholar 

  • IRAC (2018) Insecticide resistance action committee. Pest information. http://www.irac-online.org/pests/

  • Ishaaya I, Barazani A, Kontsedalov S, Horowitz AR (2007) Insecticides with novel modes of action: mechanism, selectivity and cross-resistance. Entomol Res 37(3):148–152

    Article  Google Scholar 

  • Ishii H (2006) Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn Agric Res Q 40:205–211

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Kanetis L, Christodoulou S, Iacovides T (2017) Fungicide resistance profile and genetic structure of Botrytis cinerea from greenhouse crops in Cyprus. Eur J Plant Pathol 147:527–540

    Article  CAS  Google Scholar 

  • Katan T (1983) Resistance to 3,5-dichlorophenyl-N-cyclimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea on protected crops. Plant Pathol 31:133–141

    Article  Google Scholar 

  • Krämer W, Schirmer U, Jeschke P, Witschel M (2012) Modern crop protection compounds, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, pages 1498

    Google Scholar 

  • Le Mire G, Nguyen ML, Fassotte B, duJardin P, Verheggen F, Delaplace P, Jiakli MH (2016) Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol Agron Soc Environ 20(S1):299–313

    Google Scholar 

  • Leadbeater A, Gisi U (2010) The challenge of chemical control of plant diseases. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases. Springer, Dordrecth, pp 3–17

    Chapter  Google Scholar 

  • Llop J, Gil E, Llorens J, Gallart M, Balsari P (2015) Influence of air-assistance on spray application for tomato plants in greenhouses. Crop Prot 78:293–301

    Article  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Mikaberidze A, Paveley N, Bonhoeffer S, van den Bosch F (2016) Emergence of resistance to fungicides: the role of fungicide dose. Phytopathology 107:545–560

    Article  Google Scholar 

  • Moorman GW, Lease RJ (1992) Benzimidazole- and dicarboximide-resistant Botrytis cinerea from Pennsylvania greenhouses. Plant Dis 76:477–480

    Article  CAS  Google Scholar 

  • Myresiotis CK, Karaoglanidis GS, Tzavella-Kòonari K (2007) Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis 91:407–413

    Article  CAS  PubMed  Google Scholar 

  • Nadimi A, Kamali K, Arbabi M, Abdoli F (2011) Study on persistence tests of miticides abamectin and fenproximate to predatory mite Phytoseiulus persimilis (Acarina: Phytoseiidae). Afr J Agric Res 6:338–342

    Google Scholar 

  • Nilsson E, Balsari P, (2012) Testing of handled material, testing in greenhouses, highlight problems and come up with common solutions. In: NiF seminar 452: testing and certification of agricultural machinery. Riga, Latvia

    Google Scholar 

  • Nuyttens D, Braekman P, Windey S, Sonck B (2009) Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag Sci 65:781–790

    Article  CAS  PubMed  Google Scholar 

  • Oliver RP, Hewitt HG (2014) Fungicides in crop protection, 2nd edn. CABI. pages 200

    Google Scholar 

  • Pugliese M, Gilardi G, Garibaldi A, Gullino ML (2015) Organic amendments and soil suppressiveness: results with vegetable and ornamental crops. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management. Soil Biology 46, 495–509

    Google Scholar 

  • Raguraman S, Kannan M (2014) Non-target effects of botanicals on beneficial arthropods with special reference to Azadirachta indica. In: Singh D (ed) Advances in plant biopesticides. Springer India, New Delhi, pp 173–205

    Chapter  Google Scholar 

  • Richter E, Marchand P, Ingegno BL, Tavella L, Vassiliou V (2016) How to integrate biopesticides in organic greenhouse growing systems. Fact sheets no.11. Cost action FA1105 – biogreenhouses. http://www.biogreenhouse.org/public-documents/cat_view/18-publications/59-factsheets/51-factsheets-pest-management/56-high-resolution

  • da Rocha AB, Hammerschmidt R (2005) History and perspectives on the use of disease resistance inducers in horticultural crops. HortTechnology 15:518–528

    Article  Google Scholar 

  • Roubos CR, Rodriguez-Saona C, Holdcraft R, Mason KS, Isaacs R (2014) Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies. J Econ Entomol 107:277–285

    Article  PubMed  Google Scholar 

  • Rupp S, Weber RWS, Rieger D, Detzel P, Hahn M (2017) Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front Microbiol. https://doi.org/10.3389/fmicb.2016.02075

  • Sanchez-Hermosilla J, Rincon VJ, Paez F, Fernandez M (2012) Comparative spray deposits by manually pulled trolley sprayer and a spray gun in tomato crops. Crop Prot 31:119–124

    Article  Google Scholar 

  • Sherif B, Ghani A, Hanafi A, Nasr IN (2010) Non-toxic washing solutions for decreasing mychlobutanil, fenhexamid and boscalid residues in sweet pepper and cherry tomatoes. Aust J Basic Appl Sci 4:3360–3365

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Short DE (1981) Phytotoxicity of pesticides to plants. Ornamentals Northwest Arch 5:4–5

    Google Scholar 

  • Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Stark JD, Banks JE, Acheampong S (2004) Estimating susceptibility of biological control agents to pesticides: influence of life history strategies and population structure. Biol Control 29:392–398

    Article  Google Scholar 

  • Stylianos S, Papayiannis LC, Leroch M, Veloukas T, Hahn M, Karaoglanidis GS (2011) Evaluation of the incidence of the G143A mutation and cytb intron presence in the cytochrome bc-1 gene conferring QoI resistance in Botrytis cinerea populations from several hosts. Pest Manag Sci 67:1029–1036

    Article  CAS  Google Scholar 

  • Talebi K, Kavousi A, Sabahi Q (2008) Impacts of pesticides on arthropod biological control agents. Pest Technol 2:87–97

    Google Scholar 

  • Thomas A, Langston DB, Stevenson KL (2012) Baseline sensitivity and cross-resistance to succinate-dehydrogenase-inhibiting and demethylation-inhibiting fungicides in Didymella bryoniae. Plant Dis 96:979–984

    Article  CAS  PubMed  Google Scholar 

  • Van den Bosch F, Paveley N, Shaw M, Hobbelen P, Oliver R (2011) The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathol 60:597–606

    Article  CAS  Google Scholar 

  • Van den Bosch F, Oliver R, van den Berg F, Paveley N (2014) Governing principles can guide fungicide-resistance management tactics. Annu Rev Phytopathol 52:175–195

    Article  PubMed  CAS  Google Scholar 

  • Veloukas T, Leroch M, Hahn M, Karaoglanidis GS (2011) Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Dis 95:1302–1307

    Article  CAS  PubMed  Google Scholar 

  • Vukovic S, Indjic D, Gvozdenac S (2014) Phytotoxic effects of fungicides, insecticides and nonpesticidal components on pepper depending on water quality. Pesticidi Fitomedicina 29:145–153

    Article  CAS  Google Scholar 

  • Walters DR, Fountaine JM (2009) Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J Agric Sci 147:523–535

    Article  CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Weber RWS, Entrop AP (2017) Recovery of fungicide-resistant Botrytis isolates from strawberry nursery plants. Eur J Plant Pathol 149:739–742

    Article  CAS  Google Scholar 

  • Yakhin QI, Lubyanov AA, Yakhin IA, Brown PH (2015) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Google Scholar 

  • Zhang CQ, Hu JL, Wei FL, Zhu GN (2009) Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in eastern China. Phytoparasitica 37:351–359

    Article  CAS  Google Scholar 

  • Zhang CQ, Liu YL, Ding L, Zhu GN (2011) Shift of sensitivity of Botrytis cinerea to azoxystrobin in greenhouse vegetables before and after exposure to the fungicide. Phytoparasitica 39:293–302

    Article  CAS  Google Scholar 

  • Zhu SS, Liu XL, Wang Y, Wu XH, Liu PF, Li JQ, Yuan SK, Si NG (2007) Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses. Plant Pathol 65:967–975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lodovica Gullino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gullino, M.L., Tavella, L. (2020). Chemical and Natural Pesticides in IPM: Side-Effects and Application. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_15

Download citation

Publish with us

Policies and ethics