An Improved Convolutional Neural Network Architecture for Image Classification

  • A. Ferreyra-Ramirez
  • C. Aviles-Cruz
  • E. Rodriguez-MartinezEmail author
  • J. Villegas-Cortez
  • A. Zuñiga-Lopez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


This manuscript presents the design and implementation of an improved convolutional neural network (CNN) for image classification which was carefully crafted to avoid overfitting. Contrary to most CNNs which apply normalization before pooling, our proposed architecture reverse the order of such tasks. The performance of the proposed architecture, named ACEnet, was evaluated using a hold-out method over five selected databases: Olivia, Paris, Oxford Buildings, Caltech-101, and Caltech-256. We present three main results: processing time, training performance and testing performance for each database. Also, we present a comparison versus the well-known Alexnet architecture, where our CNN proposal improves 5.11% the mean testing performance over the selected databases.


Convolutional neural network Image classification Mini-batch size Epochs number Overfitting 


  1. 1.
  2. 2.
  3. 3.
    Imagenet dataset.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelop. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefGoogle Scholar
  8. 8.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Gloucestershire (1996)zbMATHGoogle Scholar
  9. 9.
    Burges, C., et al.: Learning to rank using gradient descent. In: 22nd International conference on Machine Learning. ACM Press (2005)Google Scholar
  10. 10.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: proceedings of ECCV (2014)Google Scholar
  11. 11.
    Ciresan, D.C., Meier, U., Masci, J., Gambardella, L., Schmidhuber, J.: Flexible high performance convolutional neural networks for image classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 2, pp. 1237–1242 (2011)Google Scholar
  12. 12.
    Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Computer Vision and Pattern Recognition, pp. 248–255 (2009)Google Scholar
  13. 13.
    Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)CrossRefGoogle Scholar
  14. 14.
    Girshick, R.B., Danahue, J.: Rich features hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  15. 15.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323 (2011)Google Scholar
  16. 16.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  17. 17.
    Hertel, L., Barth, E., Kaster, T., Martinetz, T.: Deep convolutional neural networks as generic feature extractor. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1–4, July 2015Google Scholar
  18. 18.
    Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)Google Scholar
  19. 19.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRefGoogle Scholar
  20. 20.
    Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the 2nd International Conference on Learning Representation (2014)Google Scholar
  21. 21.
    Razavjan, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 512–519 (2014)Google Scholar
  22. 22.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to precent neural network from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sun, W., Su, F.: A novel companion objective function for regularization of deep convolutional neural networks. Image Vis. Comput. 60, 58–63 (2017)CrossRefGoogle Scholar
  24. 24.
    Usunier, N., Buffoni, D., Gallinari, P.: Ranking with ordered weighted pairwise classification. In: Proceedings of the 26th Annual International Conference on Machine Learning, ACM Press (2009)Google Scholar
  25. 25.
    Wu, B., Liu, Z., Yuan, Z., Sun, G., Wu, C.: Reducing overfitting in deep convolutional neural networks using redundancy regularizer. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 49–55. Springer, Cham (2017). Scholar
  26. 26.
    Xu, C., et al.: Multi-loss regularized deep neural network. IEEE Trans. Circ. Syst. Video Technol. 26(12), 2273–2283 (2016)CrossRefGoogle Scholar
  27. 27.
    Yosinski, J., Clune, J., Bengio, Y.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, vol. 27, pp. 3320–3328 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Ferreyra-Ramirez
    • 1
  • C. Aviles-Cruz
    • 1
  • E. Rodriguez-Martinez
    • 1
    Email author
  • J. Villegas-Cortez
    • 1
  • A. Zuñiga-Lopez
    • 1
  1. 1.Departamento de ElectrónicaUniversidad Autónoma Metropolitana, Unidad AzcapotzalcoMexico CityMexico

Personalised recommendations