
An Improved Convolutional Neural
Network Architecture for Image

Classification

A. Ferreyra-Ramirez, C. Aviles-Cruz, E. Rodriguez-Martinez(B),
J. Villegas-Cortez, and A. Zuñiga-Lopez

Departamento de Electrónica, Universidad Autónoma Metropolitana,
Unidad Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas,

02200 Mexico City, Mexico
{fra,caviles,erm,jvc,azl}@azc.uam.mx

Abstract. This manuscript presents the design and implementation of
an improved convolutional neural network (CNN) for image classifica-
tion which was carefully crafted to avoid overfitting. Contrary to most
CNNs which apply normalization before pooling, our proposed architec-
ture reverse the order of such tasks. The performance of the proposed
architecture, named ACEnet, was evaluated using a hold-out method
over five selected databases: Olivia, Paris, Oxford Buildings, Caltech-
101, and Caltech-256. We present three main results: processing time,
training performance and testing performance for each database. Also,
we present a comparison versus the well-known Alexnet architecture,
where our CNN proposal improves 5.11% the mean testing performance
over the selected databases.

Keywords: Convolutional neural network · Image classification ·
Mini-batch size · Epochs number · Overfitting

1 Introduction

Nowdays, convolutional neural networks are a central topic in computer vision,
specifically in applications such as video and image processing, where deep
learning architectures have proven to outperform traditional image classification
approaches. A CNN is a variation of a multilayer perceptron, but its performance
makes it much more effective in machine vision tasks because each stage models
one part of the visual cortex. Theoretical foundations of CNNs are based on the
Neocognitron introduced by Fukushima in 1980 [13], improved by LeCun in 1998
[19] and fine-tuned by Ciresan in 2011 [11].

As classifiers, CNNs have an incredible generalization capability, which
increases with the size of the training set, because the greater the amount of infor-
mation available, the better the millions of parameters contained in its structure
will be trained [3,12]. For databases with limited number of labeled images, it
has been suggested that fine-tuning a trained architecture with a robust database
is better than training the same architecture from scratch [10,14,21,27].
c© Springer Nature Switzerland AG 2019
J. A. Carrasco-Ochoa et al. (Eds.): MCPR 2019, LNCS 11524, pp. 89–101, 2019.
https://doi.org/10.1007/978-3-030-21077-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21077-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-21077-9_9


90 A. Ferreyra-Ramirez et al.

One of the key issues for a successful CNN is choosing the structure and
parameters that represent image information accurately and uniquely. These
structure is comprised of stages, where each stage is conformed by convolution,
rectification, pooling and normalization tasks. When the CNN is used in classifi-
cation problems, there is also a classification stage comprised of fully connected
layers followed by an output layer, where the number of neurons is equal to the
number of classes.

The configuration parameters in a CNN are divided into two categories: (a)
those concerning the architecture –such as kernel size, stride and padding– and
(b) those concerning the training algorithm –such as mini-batch size, regular-
ization type, number of training epochs, learning-rate drop period, learning-rate
drop factor, learning-rate schedule, and initial learning rate.

In this paper, we present the design and implementation of an improved
convolutional neural network for image classification which was carefully crafted
to avoid overfitting. The performance of the proposed architecture, which we
named ACEnet, was compared against that of Alexnet [18], achieving a 5.11%
increase in classification accuracy.

ACEnet consists of six feature extraction (FE) stages, instead of five as pro-
posed in [17,18]. The additional stage is comprised of convolution, rectification
and pooling tasks. Another important difference between Alexnet and our pro-
posal is on the second FE stage, where in the sequence of tasks: convolution,
rectification, normalization and pooling, proposed by Alexnet, the order of the
last two task is inverted.

To compare the performance of both architectures, each was trained from
scratch using five databases: Oliva and Torralba (Oliva) [4], Paris [6], Oxford
[5], Caltech-101 [1] and Caltech-256 [2]. For each selected database we present
processing time and classification accuracy for both training set and testing set.

The rest of the paper is organized as follows. Section 2 describes the state of
the art. Section 3 presents a general convolutional neural network architecture.
The proposed architecture is presented in Sect. 4. Section 5 presents the employed
methodology. Results are described in Sect. 6. Finally, Sect. 7 summarizes the
main conclusions and briefly talks about future directions.

2 State of the Art

The classical techniques to avoid over-fitting in CNNs have been dropout and
data augmentation, first proposed in [18]. Recently, several works have shifted
the attention into other regularization forms that attempt to modify the loss
function used by the gradient descent algorithm or its variants. An intermediate
layer between pooling and convolution layers is proposed in [23], such layer
is a micro network which can be modelled as a small classifier, such as SVM
or softmax classifiers. Each micro network adds a regularization term to the
CNN’s loss function, which simultaneously minimize final classification error
while enforcing hidden layers to learn more discriminative features.

The term micro network was introduced in [20] and refers to a modification
in the architecture of a CNN where a multi-layer perceptron (MLP), or other



ACEnet Image Classification 91

small network, is used instead of a linear filter at each convolutional layer. Each
patch of the input volume is fed to the MLP, and the MLP output forms a
voxel of the output matrix. The feature maps are build by sliding the MLP
over the whole input volume. The architecture using micro networks is known
as network-in-network (NiN).

An extension of [20] was proposed in [26], where the output of a NiN is
routed into multiple fully-connected layers, each concatenated to a different loss
function. The authors of [26] claim that using multiple loss functions drag the
training algorithm away from overfitting to one particular single-loss function.
The intuition behind using multiple loss functions is that each will model a
different aspect of the same task. For instance, the pairwise ranking loss [24]
prioritizes learning a given order of labelled pairs, while the LambdaRank loss
[9] optimizes the top-k classification accuracy.

A redundancy regularizer was proposed in [25] to reduce the number of cor-
related kernels at each convolutional layer. Such regularizer showed a slight
improvement over dropout, but when combined with it and early stopping the
improvement was significant.

Fig. 1. Hierarchical representation of a convolutional neural network.

3 Convolutional Neural Network

Figure 1 displays a generic CNN architecture. It is a hierarchical structure com-
posed of five principal layers:

Input layer. It is considered as a pre-processing layer, where the input
images can be resized, rotated or subsampled.
Convolution layer. It is considered as the basic building block in a CNN,
and performs most of the computational work. This layer receives an input
volume with Hc

in pixels height, W c
in pixels width, Dc

in channels deep, and
P pixels for padding. The input volume is processed with a set of k filters,
which are encoded as weights and connections between neurons. Such filters
are based on convolutional masks, called kernels, and are defined with the fol-
lowing parameters: spatial extension (E, [Wf ,Hf ]) and stride (Sx, Sy), where



92 A. Ferreyra-Ramirez et al.

E is the kernel depth along Dc
in, [Wf ,Hf ] is the area size where convolu-

tion will be computed, and (Sx, Sy) define the number of pixels that will be
skipped between consecutive convolutions. The output volume size is defined
as (Hc

out,W
c
out,D

c
out), where each dimension is defined in terms of the input

volume as W c
out = (W c

in − E + 2P )/Sx + 1, Hc
out = (Hc

in − E + 2P )/Sy + 1,
and Dc

out = k.
Pooling layer. Its purpose is to shrink the convolution layer output so that
the dimensionality of the extracted features can also be reduced, while keeping
the information they encode. The pooling layer receives an input volume of
size (W p

in,Hp
in,Dp

in), which is processed with a set of filters with the following
parameters: spatial extension (F, [Wf ,Hf ]) and stride (Sx, Sy). The output
volume size is defined as (Hp

out,W
p
out,D

p
out), where each dimension is defined

in terns of the input volume as W p
out = (W p

in − F )/Sx + 1, Hp
out = (Hp

in −
F )/Sy + 1, and Dp

out = Dp
in.

Fully connected layer. This layer computes the weighted sum of the pooling
layer output, or of the convolution layer when no pooling layer is present.
Output layer. This layer holds one neuron per category in the classification
task.

The first three layers comprise the FE stage while the last two layers encode the
classification stage. In a deep convolutional neural network, several FE stages
are present, while only one classification stage remains at the end of the data
flow.

4 Proposed Architecture

The proposed architecture, named ACEnet, is shown in Table 1. It is comprised
of 29 layers, from which 6 are convolution layers and 4 max-pooling layers, all
of them using different kernels and strides. Some of the convolutional layers use
padding to make their output conform with the input size needed for the next
feature-extraction stage. ACEnet uses six FE stages. Each of the first three FE
stages comprises of four layers: a convolution layer, a rectification layer, a pooling
layer, and a normalization layer. The next two FE stages only have two layers:
a convolution layer followed by a rectification layer, while the last FE stage also
have a pooling layer at the top of the previously mentioned layers. Layers 20–
25 form two generalization stages, intended to avoid overfitting in the network.
Each generalization stage calculates the weighted sum of its inputs and rectifies
it, to subsequently apply a regularization technique known as drop-out. In the
following we describe some characteristics of our proposed architecture.

Convolution layers: They were designed using small kernels (i.e. E ∈
{7, 5, 3}) to get highly representative features and decrease the number of
training parameters. The first convolution layer gets low-level features (i.e.
edges, lines and curves), while subsequent convolution layers get high-level
features.



ACEnet Image Classification 93

Rectification layers: These layers have neurons with the non-linear, non-
saturating activation function f(x) = max(0, x). They are known as Recti-
fied Linear Units (ReLU) because their behavior is similar to the half-wave
rectifier in electrical engineering. They provide a better model of biological
neurons, with similar or better performance than the logistic-sigmoid func-
tion and the hyperbolic-tangent function. It has been proved that ReLU units
reach good performance without resorting to unsupervised pre-training and,
although their training requires large amounts of labeled data, there is no neg-
ative effect to their performance [15]. The CNNs with ReLU layers are trained
several times faster then their equivalent with hyperbolic-tangent units [18].
Pooling layers with overlap: Pooling in CNNs is highly disruptive. If
the filters do not overlap, the pooling layers loose information about objects
localization on the image, which is needed to detect the precise relation among
them. The most popular pooling layers use 2 × 2 filters with a stride of 2,
shrinking the input image size by half, discarding about 75% of the activations
generated by the previous layer. To avoid information loss and overfitting, the
pooling layers used in the proposed architecture consist of 3 × 3 filters with
a stride of 2, also called pooling with overlap; if pooling windows overlap
enough, location information will be preserved.
Normalization layers: Their propose is to add generalization ability to the
network. Normalization of a neuron’s output implements a kind of lateral
inhibition much more like the found in real neurons, promoting competition
among several neurons output at times of great neural activity [18].
Drop-out layer: These layers were included to force fully connected layers
to learn more robust features. Drop-out is a highly recommended technique
to cope with overfitting [22], in which the output of some randomly-selected
neurons are set to zero so they can’t contribute with the backpropagation
of the error at training, reducing complex coadaptation of neurons; in this
way, every time a new example is fed for training, the neural network shows
a different architecture, however all the different architectures share their
weights.

5 Methodology

In this section we provide a detailed description of three important experiments
that allow us to justify the proposed architecture, as well as the training param-
eters. In the first subsection, we describe the model selection method used to set
the mini-batch size and epochs number in the training algorithm for ACEnet. In
the last subsection, we provide the settings for the numerical comparison of the
classification performance between ACEnet and Alexnet.

We used the algorithm Stochastic Gradient Descent with Momentum
(SGDM) to train the compared architectures. Let θi be the vector with all the
weights of the network at the i-th iteration of the SGDM algorithm, which are
updated by the rule θi+1 = θi − η∇E(θi) + μ(θi − θi−1), where η is the initial



94 A. Ferreyra-Ramirez et al.

Table 1. Architecture of the proposed convolutional neural network

No. Layer Output volume size Kernel Stride Padding

Width Hight Deep

0 Input 227 227 3 - - -

1 Convolution1 111 111 50 7 2 -

2 ReLu1 111 111 50 - - -

3 Pooling1 55 55 50 3 2 -

4 Normilization1 55 55 50 - - -

5 Convolution2 55 55 100 5 1 2

6 ReLu2 55 55 100 - - -

7 Pooling2 27 27 100 3 2 -

8 Normalization2 27 27 100 - - -

9 Convolution3 27 27 256 3 1 2

10 ReLu3 27 27 256 - - -

11 Pooling3 13 13 256 3 2 -

12 Normalization3 13 13 256 - - -

13 Convolution4 13 13 400 3 1 1

14 ReLu4 13 13 400 - - -

15 Convolution5 13 13 400 3 1 1

16 ReLu5 13 13 400 - - -

17 Convolution6 13 13 256 3 1 1

18 ReLu6 13 13 256 - - -

19 Pooling6 6 6 256 3 2 -

20 Fully connected 1 1 4800 - - -

21 ReLu 1 1 4800 - - -

22 Drop-out 1 1 4800 - - -

23 Fully Connected 1 1 2400 - - -

24 ReLu 1 1 2400 - - -

25 Drop-out 1 1 2400 - - -

26 Fully connected 1 1 NC - - -

27 Softmax 1 1 NC - - -

28 Classification 1 1 1000 - - -

learning rate, μ is the momentum, and E(θi) is the loss function described as
E(θi) = 1

β

∑β
k=1 Ek(θi) − λ

2 θT
i θi, where Ek(θi) is the loss function value at the

k-th training example in the mini-batch of size β, and λ is the regularization coef-
ficient. The SGDM parameters used to train Alexnet were set as recommended
in [18]. Some other parameters were kept in common for both architectures
and were set as follows: the initial weights at every layer were randomly drawn



ACEnet Image Classification 95

from the gaussian distribution N(0, 0.01); the activation thresholds at each layer
were initialized to zero; finally, the number of neurons in the output layer was
adjusted to match the number of classes in each database. Both architectures
were trained on a GPU NVIDIA GeForce GTX TITAN X with 3072 cores and
12 GB of memory, using MatLab and the Deep Learning Toolbox.

Table 2. SGDM parameters used for training of ACEnet and Alexnet

Parameter Value

ACEnet Alexnet

Initial learn rate (η) 0.001 0.01

Learn rate schedule Piecewise Piecewise

Learn rate drop factor 0.1 0.1

Learn rate drop period 30 30

Max epochs 100 100

Momentum (μ) 0.9 0.9

L2 regularization (λ) 0.0005 0.0005

Mini batch size (β) 25 128

In case of ACEnet, we decided to set the learning rate at 0.001 to get a finer
control over the steps given by the SGDM algorithm, and by setting λ = 0.0005,
we reduced the probability of overfitting and the complexity of the CNN [16].
We performed a sequential search to find the optimal value for the mini-batch
size and epoch number. In each step of the search the classification error was
computed using the hold-out method and the optimal was found in the minimum
value of the classification error.

To test the ACEnet generalization performance, we selected five complex
databases with real-world images in JPEG format.Relevant statistics for each
database are displayed on Table 3. A sixth database was build by combin-
ing all selected databases, and used only for performance comparison against

Table 3. Summary of the selected databases for image classification. “Min p. class”
and“Max p. class” refer to the minimum and maximum images per class, respectively.

Database Categories Dimensions No. images

Width Hight Depth Total Min p. class Max p. class

Oliva [7] 8 256 256 3 2,668 260 410

Paris [6] 12 1024 768 3 6,412 147 1,497

Oxford [5] 17 1024 768 3 5,063 59 1,502

Caltech-101 [1] 101 300 200 3 8,677 31 800

Caltech-256 [2] 256 300 200 3 29,780 80 798



96 A. Ferreyra-Ramirez et al.

Alexnet. Both, model selection and performance comparison was completed for
each database. In every experiment, we estimated the classification performance
by means of hold-out, where each database was split into training and testing
sets. We used 70% of the total number of images as training set and the rest as
testing set.

5.1 Training Parameters

Mini-batch Size. The mini-batch size is one of the parameters that directly
impacts CNNs performance. It indicates the number of images from the training
set that are considered at each iteration of the SGDM algorithm. The optimal
mini-batch size was found by means of sequential search in the interval [10, 120]
with increments of 10 units. At each point in the search, we recorded the clas-
sification accuracy and training time, and selected the optimal mini-batch size
as the point in the search with minimum training time and maximum accuracy.
In this experiment, every time we run the SGDM algorithm we fixed the epochs
number to 100.

Epochs Number and Overfitting. Besides drop-out layers, controlling the
epochs number in the training algorithm is an efficient way to avoid overfitting
in a CNN [18]. We trained ACEnet with different values for the epochs number,
ranging from 10 to 100 with increments of 10. We recorded the classification
error for the training set and testing set at the end of the training algorithm.
It is well known that the training and testing errors steadily decrease before
overfitting, and they diverge when the CNN has been overfitted [8]. Thus, the
optimal epochs number is the point before the classification errors diverge.

5.2 Performance Comparison

We compared the classification performance of ACEnet against that of the
well-known Alexnet architecture. The training parameters for Alexnet and for
ACEnet were the same except for the mini-batch size, which was set using the
results of the model selection method for our proposed architecture. The mini-
batch size as well as the rest of the training parameters for Alexnet were taken
from [18] and are listed in Table 2. For each of the five selected databases, we
trained both architectures using 70% of the total number of images until the
SGDM converged. After reaching convergence, we recorded training time and
classification accuracy on the training set. Next, we computed and recorded the
classification accuracy on the testing set.

6 Results

In this section we start by describing the results of the parameter selection
experiment and then we will proceed to the comparison with the well-known
Alexnet architecture.



ACEnet Image Classification 97

6.1 Training Parameters

Mini-batch Size. Figure 2 shows the recorded training times and classifica-
tion accuracies for every mini-batch size tested in the model selection method
described in Sect. 5.1 for Oliva database. It can be seen in Fig. 2 that the best
accuracy is located between 1 and 50 images per batch, while the minimum
training time is located between 20 and 40 images per batch. So, having a trade-
off between accuracy and training time, we propose to use a mini-batch size of
25 for Oliva database. The same results were found for other image datasets.

Fig. 2. Mini-batch size selection for olivaba database.

Epoch Number and Overfitting. We can observe in Fig. 3a the classification
accuracy reached when ACEnet is trained using different number of epochs for
each of the selected databases. Clearly, our proposed architecture correctly learns
the training set in about 60 epochs, regardless of the database used. Thus, setting
the number of epochs to 100 give a good training margin for future databases,
however it must be tested if ACEnet does not overfit to the training set with such
large number of epochs. Figure 3b displays training and testing errors recorded



98 A. Ferreyra-Ramirez et al.

for different values of the epochs number using the Oliva database. It is worth
noting that although the testing error has a light increment when setting the
epochs number to 20, both training and testing errors keep decreasing steadily
until the 50 epochs point. Such increment could be considered as an overfitting
indicator, however in the next point along the grid we see both errors decrease
again, which points towards the ability of our architecture to recover from over-
fitting. The training error can be considered stable after the 50 epochs point,
however the testing error keeps decreasing until the 100 epochs point. Therefore,
we can safely train ACEnet for 100 epochs without incurring in overfitting.

Fig. 3. Epoch number selection based on overfitting analysis.

6.2 Performance Comparison

Table 4 shows an overview of the experimental results from the performance
comparison against Alexnet. In the following we elaborate further on the three
aspects shown in Table 4, namely training time Ttr, and classification accuracy
for the training Atr and testing Ate set. ACEnet required consistently less time
to reach a 100% of classification accuracy on the training set than Alexnet.



ACEnet Image Classification 99

The achieved speed up for Oliva, Paris, Oxford, Caltech-101, and Caltech-
256 databases was 1.4x, 1.2x, 1.3x, 1.9x, 1.8x and 1.4x, respectively. Although
ACEnet has one more stage than Alexnet, such increase in model complexity
did not directly impacted on the time needed for training. Regarding classi-
fication accuracy on the test set, ACEnet performed better than Alexnet for
all selected databases. The performance improvement for Oliva, Paris, Oxford,
Caltech-101, and Caltech-256 databases was 9.58%, 8.60%, 4.35%, 12.05%, and
17.60%, respectively. On average, our proposal improves 5.11% the mean testing
performance over the five selected databases. For the artificially build database,
our proposal outperformed Alexnet by 6.65%.

Table 4 also shows other measures of classification performance for both net-
works, namely F1-score, G-measure, and Matthews correlation coefficient. While
F1-score provides the harmonic mean of precision and recall, G-measures is
their geometric mean. On the other hand, Matthews correlation coefficient indi-
cates the disagreement between predicted and true labels, and it is robust to
the imbalanced-class problem. As can be seen, ACEnet generally outperforms
Alexnet in all the mentioned measures. Additionally, we performed the nonpara-
metric Friedman’s test to prove the statistical difference in the results obtained
by the two architectures. The resulting p-values for all the selected performance
measures are given in the bottom of Table 4. From such tests, we can say that
the results obtained with ACEnet are statistically different from those obtained
with Alexnet with 97% of confidence.

Table 4. Time and performance comparison between ACEnet and Alexnet. Training
time Ttr is given in hours, while classification accuracy for the training Atr and testing
Ate set are given in percentages. F1 is the harmonic mean of precision and recall, while
G is their geometric mean. MCC displays Matthew correlation coefficient.

Database ACEnet Alexnet

Ttr Atr Ate F1 G MCC Ttr Atr Ate F1 G MCC

Oliva 0.58 100 85.11 0.86 0.86 0.84 0.83 98.83 77.67 0.81 0.81 0.79

Paris 4.36 98.93 46.09 0.43 0.46 0.41 5.27 97.61 42.44 0.41 0.43 0.37

Oxford 3.36 99.49 31.42 0.25 0.30 0.20 4.35 99.97 30.11 0.20 0.26 0.15

Caltech-101 1.82 99.95 71.51 0.59 0.69 0.71 3.45 99.51 63.83 0.01 0.50 0.64

Caltech-256 7.68 99.99 36.99 0.01 0.14 0.37 13.57 99.60 31.20 0.01 0.08 0.30

All 18.63 96.81 35.51 0.01 0.23 0.35 26.88 96.64 28.95 0.01 0.14 0.28

p-value 0.0143 0.030 0.030 0.030

7 Conclusions and Future Works

We have presented an improved convolutional neural network architecture for
image classification. Designing a CNN for image classification involves setting
properly the feature extraction layers, the classification stage, and the param-
eters of the learning algorithm. The architecture of a CNN can be empirically



100 A. Ferreyra-Ramirez et al.

designed if the behavior and purpose of each stage are clearly understood, how-
ever, the parameters of the learning algorithm must be fine-tuned by a model
selection method. The proposed architecture can be trained from scratch with
any database, which avoids reusing pre-trained networks.

The results presented show that the proposed architecture do not suffer from
overfitting, allowing us to increase the number of epochs in the training algo-
rithm. We showed that while the training error reaches stability, the testing
error keeps decreasing as the number of epochs increases, however the training
time will also increase. In order to keep a low training time, we must sacrifice
generalization performance, however we obtained testing errors comparable to
those in the state-of-the-art.

Comparing our proposal with the well-known Alexnet architecture. Our
proposal improves 5.11% the mean testing performance over five real-world
databases. Regarding mean processing time, our proposal required 17.8 h to pro-
cess all five databases, while Alexnet needed 27.47 h. Our proposal is faster due
to the use of a smaller mini-batch and kernel size, and due to the reduction in the
number of epoch. However we empirically demonstrated that such size reduction
do not affect the classification accuracy. While Alexnet was specifically designed
to get a low classification error on the ILSVRC-2012 database, our proposed
architecture does not depend on a specific database and has a better generaliza-
tion performance due to the extra processing stage. As future work, we would like
to use more complex image databases, beside we would like to use the weights
of intermediate layers in pretrained CNN as a set of features for image classifi-
cation/identification, where the final aim is to conform a content-based image
retrieval (CBIR) system.

References

1. Caltech-101 dataset. http://www.vision.caltech.edu/Image Datasets/Caltech101
2. Caltech-256 dataset. http://www.vision.caltech.edu/Image Datasets/Caltech256
3. Imagenet dataset. http://www.image-net.org/
4. Labelme dataset. http://cvcl.mit.edu/database.html
5. The Oxford Buildings dataset. http://www.robots.ox.ac.uk/∼vgg/data/

oxbuildings
6. The Paris dataset. http://www.robots.ox.ac.uk/∼vgg/data/parisbuildings
7. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation

of the spatial envelop. Int. J. Comput. Vis. 42(3), 145–175 (2001)
8. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Glouces-

tershire (1996)
9. Burges, C., et al.: Learning to rank using gradient descent. In: 22nd International

conference on Machine Learning. ACM Press (2005)
10. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the

details: delving deep into convolutional nets. In: proceedings of ECCV (2014)
11. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L., Schmidhuber, J.: Flexible

high performance convolutional neural networks for image classification. In: Pro-
ceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence, vol. 2, pp. 1237–1242 (2011)

http://www.vision.caltech.edu/Image_Datasets/Caltech101
http://www.vision.caltech.edu/Image_Datasets/Caltech256
http://www.image-net.org/
http://cvcl.mit.edu/database.html
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings


ACEnet Image Classification 101

12. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.F.: ImageNet: a large-scale
hierarchical image database. In: IEEE Computer Vision and Pattern Recognition,
pp. 248–255 (2009)

13. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4),
193–202 (1980)

14. Girshick, R.B., Danahue, J.: Rich features hierarchies for accurate object detection
and semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587 (2014)

15. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics,
vol. 15, pp. 315–323 (2011)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cam-
bridge (2016)

17. Hertel, L., Barth, E., Kaster, T., Martinetz, T.: Deep convolutional neural net-
works as generic feature extractor. In: Proceedings of the IEEE International Joint
Conference on Neural Networks, pp. 1–4, July 2015

18. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems,
vol. 25, pp. 1097–1105 (2012)

19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

20. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the 2nd Inter-
national Conference on Learning Representation (2014)

21. Razavjan, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 512–519 (2014)

22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to precent neural network from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

23. Sun, W., Su, F.: A novel companion objective function for regularization of deep
convolutional neural networks. Image Vis. Comput. 60, 58–63 (2017)

24. Usunier, N., Buffoni, D., Gallinari, P.: Ranking with ordered weighted pairwise clas-
sification. In: Proceedings of the 26th Annual International Conference on Machine
Learning, ACM Press (2009)

25. Wu, B., Liu, Z., Yuan, Z., Sun, G., Wu, C.: Reducing overfitting in deep con-
volutional neural networks using redundancy regularizer. In: Lintas, A., Rovetta,
S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp.
49–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7 6

26. Xu, C., et al.: Multi-loss regularized deep neural network. IEEE Trans. Circ. Syst.
Video Technol. 26(12), 2273–2283 (2016)

27. Yosinski, J., Clune, J., Bengio, Y.: How transferable are features in deep neural
networks? In: Advances in Neural Information Processing Systems, vol. 27, pp.
3320–3328 (2014)

https://doi.org/10.1007/978-3-319-68612-7_6

	An Improved Convolutional Neural Network Architecture for Image Classification
	1 Introduction
	2 State of the Art
	3 Convolutional Neural Network
	4 Proposed Architecture
	5 Methodology
	5.1 Training Parameters
	5.2 Performance Comparison

	6 Results
	6.1 Training Parameters
	6.2 Performance Comparison

	7 Conclusions and Future Works
	References




